Machine and deep learning algorithms for classifying different types of dementia: A literature review

被引:2
|
作者
Noroozi, Masoud [1 ]
Gholami, Mohammadreza [2 ]
Sadeghsalehi, Hamidreza [3 ]
Behzadi, Saleh [4 ]
Habibzadeh, Adrina [5 ,6 ]
Erabi, Gisou [7 ]
Sadatmadani, Sayedeh-Fatemeh [8 ]
Diyanati, Mitra [9 ]
Rezaee, Aryan [10 ]
Dianati, Maryam [4 ]
Rasoulian, Pegah [11 ]
Rood, Yashar Khani Siyah [12 ]
Ilati, Fatemeh [13 ]
Hadavi, Seyed Morteza [14 ]
Mojeni, Fariba Arbab [15 ]
Roostaie, Minoo [16 ]
Deravi, Niloofar [17 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Biomed Engn, Esfahan, Iran
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran, Iran
[3] Iran Univ Med Sci, Dept Artificial Intelligence Med Sci, Tehran, Iran
[4] Rafsanjan Univ Med Sci, Student Res Comm, Rafsanjan, Iran
[5] Fasa Univ Med Sci, Student Res Comm, Fasa, Iran
[6] Fasa Univ Med Sci, USERN Off, Fasa, Iran
[7] Urmia Univ Med Sci, Student Res Comm, Orumiyeh, Iran
[8] Isfahan Univ Med Sci, Med Sch, Esfahan, Iran
[9] Univ Colorado Boulder, Paul M Rady Dept Mech Engn, Boulder, CO 80303 USA
[10] Iran Univ Med Sci, Student Res Comm, Sch Med, Tehran, Iran
[11] Univ Tehran Med Sci, Neurosci Inst, Sports Med Res Ctr, Tehran, Iran
[12] Islamic Azad Univ Bandar Abbas, Fac Engn Comp Engn, Bandar Abbas, Iran
[13] Islamic Azad Univ, Fac Med, Student Res Comm, Mashhad, Iran
[14] Khajeh Nasir Toosi Univ, Dept Phys, Tehran, Iran
[15] Mazandaran Univ Med Sci, Student Res Comm, Sch Med, Sari, Iran
[16] Islamic Azad Univ Tehran Med Branch, Sch Med, Tehran, Iran
[17] Shahid Beheshti Univ Med Sci, Sch Med, Arabi Ave,Daneshjoo Blvd, Tehran 1983963113, Iran
关键词
Alzheimer's disease; artificial intelligence; dementia; frontotemporal dementia; Lewy body; machine learning; vascular dementia; MILD COGNITIVE IMPAIRMENT; LONG NONCODING RNA; ALZHEIMERS-DISEASE; CLASSIFICATION; BIOMARKERS; DIAGNOSIS; PREDICTION; DECLINE; CNN;
D O I
10.1080/23279095.2024.2382823
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Predicting progression to dementia with "comprehensive visual rating scale" and machine learning algorithms
    Park, Chaeyoon
    Jang, Jae-Won
    Joo, Gihun
    Kim, Yeshin
    Kim, Seongheon
    Byeon, Gihwan
    Park, Sang Won
    Kasani, Payam Hosseinzadeh
    Yum, Sujin
    Pyun, Jung-Min
    Park, Young Ho
    Lim, Jae-Sung
    Youn, Young Chul
    Choi, Hyun-Soo
    Park, Chihyun
    Im, Hyeonseung
    Kim, SangYun
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [32] Bibliometric analysis of the global scientific production on machine learning applied to different cancer types
    Ruiz-Fresneda, Miguel Angel
    Gijon, Alfonso
    Morales-Alvarez, Pablo
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (42) : 96125 - 96137
  • [33] Machine and deep learning approaches for alzheimer disease detection using magnetic resonance images: An updated review
    Menagadevi, M.
    Devaraj, Somasundaram
    Madian, Nirmala
    Thiyagarajan, D.
    MEASUREMENT, 2024, 226
  • [34] Evaluation and management of oropharyngeal dysphagia in different types of dementia: A systematic review
    Alagiakrishnan, Kannayiram
    Bhanji, Rahima A.
    Kurian, Mini
    ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2013, 56 (01) : 1 - 9
  • [35] Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients
    James, Charlotte
    Ranson, Janice M.
    Everson, Richard
    Llewellyn, David J.
    JAMA NETWORK OPEN, 2021, 4 (12)
  • [36] Algorithms: Supervised Machine Learning Types and Their Application Domains
    Divyashree, N.
    Prasad, K. S. Nandini
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 787 - 807
  • [37] Comparing the performance of machine learning and deep learning algorithms classifying messages in Facebook learning group
    Huang-Fu, Cheng-Yo
    Liao, Chen-Hsuan
    Wu, Jiun-Yu
    IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 347 - 349
  • [38] A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease
    Arya, Akhilesh Deep
    Verma, Sourabh Singh
    Chakarabarti, Prasun
    Chakrabarti, Tulika
    Elngar, Ahmed A.
    Kamali, Ali-Mohammad
    Nami, Mohammad
    BRAIN INFORMATICS, 2023, 10 (01)
  • [39] Performance Analysis of Most Prominent Machine Learning and Deep Learning Algorithms In Classifying Bangla Crime News Articles
    Tabashum, Salma
    Hossain, Md Mamun
    Islam, Ariful
    Zahara, Mun Yea Mahafi Taz
    Fami, Fahmida Naznin
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1273 - 1277
  • [40] Machine learning and deep learning algorithms used to diagnosis of Alzheimer's: Review
    Balne, Sridevi
    Elumalai, Anupriya
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5151 - 5156