Long living human-machine systems in construction and production enabled by digital twins

被引:0
作者
Vogel-Heuser, Birgit [1 ]
Hartl, Fandi [1 ]
Wittemer, Moritz [2 ]
Zhao, Jingyun [1 ]
Mayr, Andreas [3 ]
Fleischer, Martin [4 ]
Prinz, Theresa [4 ]
Fischer, Anne [5 ]
Trauer, Jakob [6 ]
Schroeder, Philipp [6 ]
Goldbach, Ann-Kathrin [7 ]
Rothmeyer, Florian [5 ]
Zimmermann, Markus [6 ]
Bletzinger, Kai-Uwe [7 ]
Fottner, Johannes [5 ]
Daub, Ruediger [3 ]
Bengler, Klaus [4 ]
Borrmann, Andre [8 ]
Zaeh, Michael F. [3 ]
Wudy, Katrin [2 ]
机构
[1] Tech Univ Munich, Inst Automat & Informat Syst, Boltzmannstr 15, D-85748 Garching, Germany
[2] Tech Univ Munich, Professorship Laser Based Addit Mfg, Boltzmannstr 15, D-85748 Garching, Germany
[3] Tech Univ Munich, Inst Machine Tools & Ind Management, Boltzmannstr 15, D-85748 Garching, Germany
[4] Tech Univ Munich, Chair Ergon, Boltzmannstr 15, D-85748 Garching, Germany
[5] Tech Univ Munich, Chair Mat Handling, Mat Flow, Logist, Boltzmannstr 15, D-85748 Garching, Germany
[6] Tech Univ Munich, Lab Prod Dev & Lightweight Design, Boltzmannstr 15, D-85748 Garching, Germany
[7] Tech Univ Munich, Chair Struct Anal, Arcisstr 21, D-80333 Munich, Germany
[8] Tech Univ Munich, Chair Computat Modeling & Simulat, Arcisstr 21, Munich, Germany
关键词
digital twin; production; construction; production and construction engineering; human machine interaction; Industry; 4.0; Digitaler Zwilling; Produktion; Bauwesen; Produktions- und Bauingenieurwesen; Mensch-Maschine-Interaktion; Industrie; AUTOMATED PRODUCTION SYSTEMS; CHALLENGES; SOFTWARE;
D O I
10.1515/auto-2023-0227
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the industrial sector, products evolve significantly over their operational life. A key challenge has been maintaining precise, relevant engineering data. This paper explores the digital twin concept, merging engineering and operational data to enhance product information updates. It examines digital twin applications in construction, material flow, manufacturing and production, citing battery production and additive manufacturing. Digital twins aid in analyzing, experimenting with, and refining a system's design and its operation, offering insights across product and system lifecycles. This includes tackling data management and model-data consistency challenges, as well as the recognition of synergies. This paper emphasizes sustainable, efficient management of engineering information, reflecting shifts in product longevity and documentation in industrial products and machinery. In der Industrie entwickeln sich Produkte w & auml;hrend ihrer Lebensdauer erheblich weiter. Eine zentrale Herausforderung ist die Pflege pr & auml;ziser, relevanter technischer Daten. Dieser Beitrag beleuchtet das Konzept des digitalen Zwillings, welches Entwicklungs- und Laufzeitdaten integriert, um die Aktualit & auml;t von Produktinformationen zu verbessern. Insbesondere werden Anwendungen im Bauwesen, dem Materialfluss, der Fertigung und Produktion, am Beispiel der Batterieproduktion und der additiven Fertigung, untersucht. Digitale Zwillinge unterst & uuml;tzen das Analysieren, Experimentieren mit und Verbessern von Systementw & uuml;rfen und deren Nutzung und gew & auml;hren Einblicke in Produkt- und Systemlebenszyklen. Sie adressieren Herausforderungen im Datenmanagement und der Konsistenz zwischen Modellen und Daten sowie das Erkennen von Synergien. Dieser Beitrag stellt das nachhaltige, effiziente Management von Entwicklungsinformationen vor, das den Wandel in Langlebigkeit und Dokumentation von industriellen Produkten und Maschinen widerspiegelt.
引用
收藏
页码:789 / 814
页数:26
相关论文
共 96 条
[1]  
[Anonymous], Cyber-Physical-Human Systems
[2]  
[Anonymous], 2020, ISO-23247
[3]   Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams [J].
Arroyo, Esteban ;
Hoernicke, Mario ;
Rodriguez, Pablo ;
Fay, Alexander .
COMPUTERS & CHEMICAL ENGINEERING, 2016, 92 :112-132
[4]   Digitalization of Battery Manufacturing: Current Status, Challenges, and Opportunities [J].
Ayerbe, Elixabete ;
Berecibar, Maitane ;
Clark, Simon ;
Franco, Alejandro A. ;
Ruhland, Janna .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[5]   Human Digital Twin for Fitness Management [J].
Barricelli, Barbara Rita ;
Casiraghi, Elena ;
Gliozzo, Jessica ;
Petrini, Alessandro ;
Valtolina, Stefano .
IEEE ACCESS, 2020, 8 :26637-26664
[6]   On the digital twin application and the role of artificial intelligence in additive manufacturing: a systematic review [J].
Bartsch, Katharina ;
Pettke, Alexander ;
Hubert, Artur ;
Lakaemper, Julia ;
Lange, Fritz .
JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (03)
[7]   Towards a semantic Construction Digital Twin: Directions for future research [J].
Boje, Calin ;
Guerriero, Annie ;
Kubicki, Sylvain ;
Rezgui, Yacine .
AUTOMATION IN CONSTRUCTION, 2020, 114
[8]   Customer experience challenges: bringing together digital, physical and social realms [J].
Bolton, Ruth N. ;
McColl-Kennedy, Janet R. ;
Cheung, Lilliemay ;
Gallan, Andrew ;
Orsingher, Chiara ;
Witell, Lars ;
Zaki, Mohamed .
JOURNAL OF SERVICE MANAGEMENT, 2018, 29 (05) :776-808
[9]  
Borrmann A., 2021, Building information modeling
[10]   Monitoring and Modeling of a Wind Turbine Support Structure to Create a Digital Twin [J].
Botz, Max ;
Emiroglu, Altug ;
Osterminski, Kai ;
Raith, Manuel ;
Wuechner, Roland ;
Grosse, Christian .
BETON- UND STAHLBETONBAU, 2020, 115 (05) :342-354