scBubbletree: computational approach for visualization of single cell RNA-seq data

被引:0
作者
Kitanovski, Simo [1 ,2 ]
Cao, Yingying [1 ,2 ]
Ttoouli, Dimitris [1 ,2 ]
Farahpour, Farnoush [1 ,2 ,3 ]
Wang, Jun [1 ,2 ,4 ,5 ]
Hoffmann, Daniel [1 ,2 ]
机构
[1] Univ Duisburg Essen, Fac Biol, Bioinformat & Computat Biophys, D-45141 Essen, Germany
[2] Univ Duisburg Essen, Ctr Med Biotechnol ZMB, D-45141 Essen, Germany
[3] Univ Duisburg Essen, Univ Hosp Essen, Inst Cell Biol Canc Res, D-45147 Essen, Germany
[4] Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Shenzhen 518112, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Affiliated Hosp 2, Shenzhen, Guangdong, Peoples R China
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
关键词
scRNA-seq; Visualization; Transcriptomics;
D O I
10.1186/s12859-024-05927-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundVisualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space.ResultsWe present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as "bubbles" at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells.ConclusionsTo facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/
引用
收藏
页数:17
相关论文
共 50 条
[41]   CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data [J].
Lin, Peijie ;
Troup, Michael ;
Ho, Joshua W. K. .
GENOME BIOLOGY, 2017, 18
[42]   A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq [J].
Ye, Wenbin ;
Lian, Qiwei ;
Ye, Congting ;
Wu, Xiaohui .
GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) :67-83
[43]   ddSeeker: a tool for processing Bio-Rad ddSEQ single cell RNA-seq data [J].
Romagnoli, Dario ;
Boccalini, Giulia ;
Bonechi, Martina ;
Biagioni, Chiara ;
Fassan, Paola ;
Bertorelli, Roberto ;
De Sanctis, Veronica ;
Di Leo, Angelo ;
Migliaccio, Ilenia ;
Malorni, Luca ;
Benelli, Matteo .
BMC GENOMICS, 2018, 19
[44]   ddSeeker: a tool for processing Bio-Rad ddSEQ single cell RNA-seq data [J].
Dario Romagnoli ;
Giulia Boccalini ;
Martina Bonechi ;
Chiara Biagioni ;
Paola Fassan ;
Roberto Bertorelli ;
Veronica De Sanctis ;
Angelo Di Leo ;
Ilenia Migliaccio ;
Luca Malorni ;
Matteo Benelli .
BMC Genomics, 19
[45]   CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data [J].
Peijie Lin ;
Michael Troup ;
Joshua W. K. Ho .
Genome Biology, 18
[46]   Cascade: an RNA-seq visualization tool for cancer genomics [J].
Aaron R. Shifman ;
Radia M. Johnson ;
Brian T. Wilhelm .
BMC Genomics, 17
[47]   scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data [J].
Wang, Zile ;
Wang, Haiyun ;
Zhao, Jianping ;
Zheng, Chunhou .
BMC BIOINFORMATICS, 2023, 24 (01)
[48]   Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis [J].
Geddes, Thomas A. ;
Kim, Taiyun ;
Nan, Lihao ;
Burchfield, James G. ;
Yang, Jean Y. H. ;
Tao, Dacheng ;
Yang, Pengyi .
BMC BIOINFORMATICS, 2019, 20 (01)
[49]   IDEAS: individual level differential expression analysis for single-cell RNA-seq data [J].
Zhang, Mengqi ;
Liu, Si ;
Miao, Zhen ;
Han, Fang ;
Gottardo, Raphael ;
Sun, Wei .
GENOME BIOLOGY, 2022, 23 (01)
[50]   Self-supervised contrastive learning for integrative single cell RNA-seq data analysis [J].
Han, Wenkai ;
Cheng, Yuqi ;
Chen, Jiayang ;
Zhong, Huawen ;
Hu, Zhihang ;
Chen, Siyuan ;
Zong, Licheng ;
Hong, Liang ;
Chan, Ting-Fung ;
King, Irwin ;
Gao, Xin ;
Li, Yu .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)