scBubbletree: computational approach for visualization of single cell RNA-seq data

被引:0
作者
Kitanovski, Simo [1 ,2 ]
Cao, Yingying [1 ,2 ]
Ttoouli, Dimitris [1 ,2 ]
Farahpour, Farnoush [1 ,2 ,3 ]
Wang, Jun [1 ,2 ,4 ,5 ]
Hoffmann, Daniel [1 ,2 ]
机构
[1] Univ Duisburg Essen, Fac Biol, Bioinformat & Computat Biophys, D-45141 Essen, Germany
[2] Univ Duisburg Essen, Ctr Med Biotechnol ZMB, D-45141 Essen, Germany
[3] Univ Duisburg Essen, Univ Hosp Essen, Inst Cell Biol Canc Res, D-45147 Essen, Germany
[4] Southern Univ Sci & Technol, Peoples Hosp Shenzhen 3, Natl Clin Res Ctr Infect Dis, Shenzhen 518112, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Affiliated Hosp 2, Shenzhen, Guangdong, Peoples R China
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
关键词
scRNA-seq; Visualization; Transcriptomics;
D O I
10.1186/s12859-024-05927-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundVisualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space.ResultsWe present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as "bubbles" at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells.ConclusionsTo facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Classification of low quality cells from single-cell RNA-seq data
    Ilicic, Tomislav
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Bagger, Frederik Otzen
    McCarthy, Davis James
    Marioni, John C.
    Teichmann, Sarah A.
    [J]. GENOME BIOLOGY, 2016, 17
  • [32] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    [J]. CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [33] Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity
    Chen, Renchao
    Wu, Xiaoji
    Jiang, Lan
    Zhang, Yi
    [J]. CELL REPORTS, 2017, 18 (13): : 3227 - 3241
  • [34] AS-Quant: Detection and Visualization of Alternative Splicing Events with RNA-seq Data
    Fahmi, Naima Ahmed
    Nassereddeen, Heba
    Chang, Jaewoong
    Park, Meeyeon
    Yeh, Hsinsung
    Sun, Jiao
    Fan, Deliang
    Yong, Jeongsik
    Zhang, Wei
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [35] Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer
    Liu, Qi
    Chen, Chong
    Shen, Enjian
    Zhao, Fangqing
    Sun, Zhongsheng
    Wu, Jinyu
    [J]. GENOMICS, 2012, 99 (03) : 178 - 182
  • [36] Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
    Pelin Gundogdu
    Carlos Loucera
    Inmaculada Alamo-Alvarez
    Joaquin Dopazo
    Isabel Nepomuceno
    [J]. BioData Mining, 15
  • [37] Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data
    Gundogdu, Pelin
    Loucera, Carlos
    Alamo-Alvarez, Inmaculada
    Dopazo, Joaquin
    Nepomuceno, Isabel
    [J]. BIODATA MINING, 2022, 15 (01)
  • [38] Review of single-cell RNA-seq data clustering for cell-type identification and characterization
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Jiecong
    Lin, Qiuzhen
    Wong, Ka-Chun
    [J]. RNA, 2023, 29 (05) : 517 - 530
  • [39] Yeast Single-cell RNA-seq, Cell by Cell and Step by Step
    Nadal-Ribelles, Mariona
    Islam, Saiful
    Wei, Wu
    Latorre, Pablo
    Nguyen, Michelle
    de Nadal, Eulalia
    Posas, Francesc
    Steinmetz, Lars M.
    [J]. BIO-PROTOCOL, 2019, 9 (17):
  • [40] scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data
    Zile Wang
    Haiyun Wang
    Jianping Zhao
    Chunhou Zheng
    [J]. BMC Bioinformatics, 24