Mixed phase iron oxides thin layers by atmospheric-pressure chemical vapor deposition method

被引:0
|
作者
Parra-Elizondo, Vladimir [1 ]
Cuentas-Gallegos, Ana Karina [2 ]
Pacheco-Catalan, Daniella [1 ]
机构
[1] Ctr Invest Cient Yucatan, Unidad Energia Renovable, AC Sierra Papacal 5Km, Merida 97200, Yucatan, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol, Ensenada, BC, Mexico
关键词
Atmospheric pressure CVD; Mixed-phase iron oxide; Thin layer oxide;
D O I
10.1016/j.mex.2024.102940
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper provides a simple method for producing a metal oxide thin layer methodology by atmospheric pressure chemical vapor deposition (APCVD) synthesis over stainless steel substrates. This methodology enables the formation of thin iron oxide layers at its performance at various temperatures of 330 degrees C, 430 degrees C, and 530 degrees C. The deposition arises from thermal decomposition of the iron organometallic precursor Fe-3(CO)(12), forming a thin layer of iron oxide is, by the ozone present in the reaction chamber promoting the deposition of the iron oxide particles over the substrate. The Raman characterization suggest that at 330 degrees C, a mixture of hematite and magnetite is predominant on the as deposited substrates, also hematite modes show to be more pronounced as the band at 300 cm(-1) narrows. Conversely, magnetite is prominent at higher synthesis temperatures, exhibiting a more intense Eg5 mode at 680 cm(-1). The particles exhibit a uniform morphology, with both metal oxide phases coexisting. The average diameter of the particles is 50 nanometers as scanning electronic microscopy shows in a transversal sample section. center dot The formation of particles is attributed to the combination of iron ions (+)2 and (+)3 in the deposition process and their interaction with oxygen in the given synthesis parameters at atmospheric pressure chemical vapor deposition (APCVD).
引用
收藏
页数:5
相关论文
共 50 条
  • [11] KINETICS OF SILICON-GERMANIUM DEPOSITION BY ATMOSPHERIC-PRESSURE CHEMICAL VAPOR-DEPOSITION
    KAMINS, TI
    MEYER, DJ
    APPLIED PHYSICS LETTERS, 1991, 59 (02) : 178 - 180
  • [12] THIN-FILM POSITIVE ELECTRODES FOR LITHIUM-IRON SULFIDE BATTERIES PRODUCED BY ATMOSPHERIC-PRESSURE CHEMICAL VAPOR-DEPOSITION
    PETRIC, A
    CROUCHBAKER, S
    EMERSON, RM
    GUR, TM
    HUGGINS, RA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (08) : C343 - C343
  • [13] Atmospheric-pressure plasma-enhanced chemical vapor deposition of electrochromic organonickel oxide thin films with an atmospheric pressure plasma jet
    Lin, Yung-Sen
    Lin, Di-Jiun
    Sung, Ping-Ju
    Tien, Shih-Wei
    THIN SOLID FILMS, 2013, 532 : 36 - 43
  • [14] RAPID FORMATION OF ZINC-OXIDE FILMS BY AN ATMOSPHERIC-PRESSURE CHEMICAL-VAPOR-DEPOSITION METHOD
    KAMATA, K
    NISHINO, J
    OHSHIO, S
    MARUYAMA, K
    OHTUKI, M
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1994, 77 (02) : 505 - 508
  • [16] Preparation and ferroelectric properties of BaTiO3 thin films by atmospheric-pressure metalorganic chemical vapor deposition
    Zeng, JM
    Wang, H
    Wang, M
    Shang, SX
    Wang, Z
    Lin, CL
    THIN SOLID FILMS, 1998, 322 (1-2) : 104 - 107
  • [17] Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition
    Lee, Jae-Ok
    Kang, Woo Seok
    Hur, Min
    Lee, Jin Young
    Song, Young-Hoon
    THIN SOLID FILMS, 2015, 597 : 7 - 13
  • [18] Silicon thin film homoepitaxy by rapid thermal atmospheric-pressure chemical vapor deposition (RT-APCVD)
    Monna, R
    Angermeier, D
    Slaoui, A
    Muller, JC
    RAPID THERMAL AND INTEGRATED PROCESSING V, 1996, 429 : 367 - 372
  • [19] PHOTOLUMINESCENCE FROM SI1-XGEX STRAINED LAYERS GROWN BY ATMOSPHERIC-PRESSURE CHEMICAL VAPOR-DEPOSITION
    ROWELL, NL
    NOEL, JP
    WANG, A
    NAMAVAR, E
    PERRY, CH
    SOREF, RA
    JOURNAL OF APPLIED PHYSICS, 1992, 71 (12) : 6201 - 6203
  • [20] Gas-phase kinetics in atmospheric-pressure plasma-enhanced chemical vapor deposition of silicon films
    Kakiuchi, Hiroaki
    Ohmi, Hiromasa
    Yasutake, Kiyoshi
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (05)