Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress

被引:0
作者
Zhang, Shike [1 ,2 ]
Wang, Guobing [2 ]
Yu, Weiwei [2 ]
Wei, Long [3 ]
Gao, Chao [2 ]
Li, Di [2 ]
Guo, Lili [2 ]
Yang, Jianbo [2 ]
Jian, Shuguang [1 ]
Liu, Nan [1 ]
机构
[1] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, Guangzhou 510650, Peoples R China
[2] Henan Acad Sci, Inst Geog Sci, Zhengzhou 450052, Peoples R China
[3] Guangdong Acad Forestry, Guangdong Prov Key Lab Silviculture Protect & Util, Guangdong Coastal Shelterbelt Ecosyst Natl Observa, Guangzhou 510520, Peoples R China
来源
BMC PLANT BIOLOGY | 2024年 / 24卷 / 01期
基金
国家重点研发计划;
关键词
Casuarina equisetifolia; Transcriptome; Metabolome; Seawater atomization; Seawater encroachment; SALT-STRESS; ABSCISIC-ACID; JASMONATES BIOSYNTHESIS; TRANSCRIPTOME ANALYSIS; SIGNAL-TRANSDUCTION; TOLERANCE; METABOLISM; ARABIDOPSIS; DROUGHT; EXPRESSION;
D O I
10.1186/s12870-024-05561-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
引用
收藏
页数:12
相关论文
共 97 条
[1]   Transcriptional variation is associated with differences in shoot sodium accumulation in distinct barley varieties [J].
Amarasinghe, Shanika L. ;
Watson-Haigh, Nathan S. ;
Byrt, Caitlin ;
James, Richard ;
Qiu, Jiaen ;
Berkowitz, Oliver ;
Whelan, James ;
Roy, Stuart J. ;
Gilliham, Matthew ;
Baumann, Ute .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 166
[2]   Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance [J].
An, Xiu-Hong ;
Hao, Yu-Jin ;
Li, En-Mao ;
Xu, Kai ;
Cheng, Cun-Gang .
PLANT CELL REPORTS, 2017, 36 (02) :255-265
[3]   Comprehensive physio-biochemical and transcriptomic characterization to decipher the network of key genes under waterlogging stress and its recuperation in Prunus persica [J].
Ateeq, Muhammad ;
Khan, Aamir Hamid ;
Zhang, Dongmei ;
Alam, Shariq Mahmood ;
Shen, Wanqi ;
Wei, Minghua ;
Meng, Jian ;
Shen, Xingyi ;
Pan, Jiajia ;
Zhu, Kaijie ;
He, Hanzi ;
Li, Guohuai ;
Liu, Junwei .
TREE PHYSIOLOGY, 2023, 43 (07) :1265-1283
[4]   4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase [J].
Barros, Jaime ;
Escamilla-Trevino, Luis ;
Song, Luhua ;
Rao, Xiaolan ;
Serrani-Yarce, Juan Carlos ;
Palacios, Maite Docampo ;
Engle, Nancy ;
Choudhury, Feroza K. ;
Tschaplinski, Timothy J. ;
Venables, Barney J. ;
Mittler, Ron ;
Dixon, Richard A. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Evolutionary Conservation of ABA Signaling for Stomatal Closure [J].
Cai, Shengguan ;
Chen, Guang ;
Wang, Yuanyuan ;
Huang, Yuqing ;
Marchant, D. Blaine ;
Wang, Yizhou ;
Yang, Qian ;
Dai, Fei ;
Hills, Adrian ;
Franks, Peter J. ;
Nevo, Eviatar ;
Soltis, Douglas E. ;
Soltis, Pamela S. ;
Sessa, Emily ;
Wolf, Paul G. ;
Xue, Dawei ;
Zhang, Guoping ;
Pogson, Barry J. ;
Blatt, Michael R. ;
Chen, Zhong-Hua .
PLANT PHYSIOLOGY, 2017, 174 (02) :732-747
[6]   Reactive oxygen species, essential molecules, during plant-pathogen interactions [J].
Camejo, Daymi ;
Guzman-Cedeno, Angel ;
Moreno, Alexander .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 103 :10-23
[7]   Crosstalk of phenylpropanoid biosynthesis with hormone signaling in Chinese cabbage is key to counteracting salt stress [J].
Cao, Bi-li ;
Li, Na ;
Xu, Kun .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 179
[8]   Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology [J].
Cheynier, Veronique ;
Comte, Gilles ;
Davies, Kevin M. ;
Lattanzio, Vincenzo ;
Martens, Stefan .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 72 :1-20
[9]   Interactive effects of salt stress and Pseudomonas syringae pv. lachrymans infection in cucumber: Involvement of antioxidant enzymes, abscisic acid and salicylic acid [J].
Chojak-Kozniewska, J. ;
Linkiewicz, A. ;
Sowa, S. ;
Radzioch, M. A. ;
Kuzniak, E. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 136 :9-20
[10]   Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis [J].
Chung, Jung-Sung ;
Zhu, Jian-Kang ;
Bressan, Ray A. ;
Hasegawa, Paul M. ;
Shi, Huazhong .
PLANT JOURNAL, 2008, 53 (03) :554-565