Enhanced thermoelectric properties in hybrid graphane/ graphene nanoribbons

被引:1
作者
Xie, Zhong-Xiang [1 ]
Deng, Yuan-Xiang [1 ]
Zhang, Yong [1 ]
Zhou, Wu-Xing [2 ]
Song, Ke-Hui [1 ]
Liu, Ming-Hui [1 ]
Mo, Zi-Xiong [1 ]
Jia, Pin-Zhen [1 ]
机构
[1] Hunan Inst Technol, Sch Sci, Hengyang 421002, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric properties; Hybrid graphane/graphene nanoribbons; Defects; PERFORMANCE; GRAPHYNE;
D O I
10.1016/j.physb.2024.416381
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The thermoelectric properties of hybrid graphane and graphene nanoribbons (GGNRs) are studied by the Landauer formula within the atomistic non-equilibrium Green's function. It is shown that hybrid GGNRs present the tunable band gap depending upon the width ratio of their components. Modulation of hybrid GGNRs can give rise to the lower thermal conductance of phonons and the better thermoelectric properties compared to pure graphene nanoribbons and graphane nanoribbons. Introducing the hydrogen defects can enhance the maximum of ZT ( ZT max ) in both armchair GGNRs (AGGNRs) and zigzag GGNRs (ZGGNRs). Such the enhancement of ZT max sensitively depends upon the defect concentrations. Among different defect concentrations, ZT max for the 20 % defect concentration has the highest value, which can be enhanced to 0.42 and 0.24 at T = 300 K in AGGNRs and ZGGNRs, respectively. A laconic analysis of these results is given.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] DFTB+, a sparse matrix-based implementation of the DFTB method
    Aradi, B.
    Hourahine, B.
    Frauenheim, Th.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) : 5678 - 5684
  • [2] Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
  • [3] Thermoelectric Power Factor Limit of a 1D Nanowire
    Chen, I-Ju
    Burke, Adam
    Svilans, Artis
    Linke, Heiner
    Thelander, Claes
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (17)
  • [4] Comprehensive Model for the Thermoelectric Properties of Two-Dimensional Carbon Nanotube Networks
    Dash, Aditya
    Scheunemann, Dorothea
    Kemerink, Martijn
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [5] Lateral Composite Structures of Graphene/Graphane/Graphone: Electronic Confinement, Heterostructures with Tunable Band Alignment, and Magnetic State
    Demirci, Salih
    Gorkan, Taylan
    Akturk, Ethem
    Ciraci, Salim
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (34) : 17239 - 17248
  • [6] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613
  • [7] Recent advances in silicon-based nanostructures for thermoelectric applications
    Gordillo, Jose Manuel Sojo
    Morata, Alex
    Sierra, Carolina Duque
    Salleras, Marc
    Fonseca, Luis
    Tarancon, Albert
    [J]. APL MATERIALS, 2023, 11 (04):
  • [8] Enhancement of p-type thermoelectric power factor by low-temperature calcination in carbon nanotube thermoelectric films containing cyclodextrin polymer and Pd
    Hata, Shinichi
    Kusada, Mokichi
    Yasuda, Soichiro
    Du, Yukou
    Shiraishi, Yukihide
    Toshima, Naoki
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [9] Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation
    Hernandez-Nieves, A. D.
    Partoens, B.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2010, 82 (16):
  • [10] Covalent functionalization of two-dimensional group 14 graphane analogues
    Huey, Warren L. B.
    Goldberger, Joshua E.
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) : 6201 - 6223