Energy Transport and Conversion Within Earth's Supercritical Bow Shock: The Role of Intense Lower-Hybrid Whistler Waves

被引:1
作者
Hull, Arthur J. [1 ]
Muschietti, Laurent [1 ,2 ]
Agapitov, Oleksiy V. [1 ]
Chaston, Christopher C. [1 ]
Le Contel, Olivier [3 ]
Lindqvist, Per-Arne [4 ]
机构
[1] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[2] LATMOS IPSL UVSQ CNRS, Guyancourt, France
[3] Univ Paris Saclay, Sorbonne Univ, Inst Polytech Paris, UMR7648,Ecole Polytech,Observ Paris,CNRS,Lab Phys, Paris, France
[4] Royal Inst Technol, Stockholm, Sweden
基金
美国国家航空航天局;
关键词
collisionless shocks; whistler waves; Poynting flux; energy transport and dissipation; plasma heating; electromagnetic waves; UPSTREAM; DISPERSION; FREQUENCY; IONS;
D O I
10.1029/2023JA031630
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detailed analysis of a high Mach number quasiperpendicular Earth bow shock crossing by the Magnetospheric Multiscale (MMS) spacecraft fleet reveal that lower-hybrid (LH) whistler waves generated in the shock foot region transport energy predominately along the shock surface and slightly toward the shock ramp in the shock normal incidence frame, where wave energy accumulates and is dissipated into the plasma. This suggests the LH whistlers play an integral role in energy reconfiguration at high Mach number collisionless shocks with ramifications to plasma heating. The multipoint observations are used to quantify the wave characteristic parameters (via interferometry), Poynting fluxes, and energy conversion rates D, and to assess their scale dependencies and spatial and temporal properties. The whistler associated energy transport and conversion are found to depend on scale and location within the layer. High-frequency electrostatic waves yield largest values of D. However, the dominant net energy exchange contribution is from the LH whistlers. In the foot spatially temporally coherent net energy exchange from the plasma to whistlers is observed, whereas deeper in the ramp net wave energy dissipation to the plasma is observed exhibiting significant space-time variability. These results are consistent with the modified two stream instability driven by the relative drift between reflected ions and electrons as the mechanism for wave growth in the foot. Owing to strong electron heating, whistler energy dissipation in the ramp is attributed to Landau damping, which out-competes the destabilizing effect of the reflected ion and electron drift. Whistler waves near lower-hybrid frequencies play an integral role in the reconfiguration of energy at high Mach number collisionless shocks Whistler mediated energy transport and exchange depends on scale and location within the layer Whistlers transport energy along the shock and slightly toward the ramp where it gets dissipated into electron heating via Landau damping
引用
收藏
页数:24
相关论文
共 39 条
  • [1] The Space Physics Environment Data Analysis System (SPEDAS)
    Angelopoulos, V.
    Cruce, P.
    Drozdov, A.
    Grimes, E. W.
    Hatzigeorgiu, N.
    King, D. A.
    Larson, D.
    Lewis, J. W.
    McTiernan, J. M.
    Roberts, D. A.
    Russell, C. L.
    Hori, T.
    Kasahara, Y.
    Kumamoto, A.
    Matsuoka, A.
    Miyashita, Y.
    Miyoshi, Y.
    Shinohara, I.
    Teramoto, M.
    Faden, J. B.
    Halford, A. J.
    McCarthy, M.
    Millan, R. M.
    Sample, J. G.
    Smith, D. M.
    Woodger, L. A.
    Masson, A.
    Narock, A. A.
    Asamura, K.
    Chang, T. F.
    Chiang, C. -Y.
    Kazama, Y.
    Keika, K.
    Matsuda, S.
    Segawa, T.
    Seki, K.
    Shoji, M.
    Tam, S. W. Y.
    Umemura, N.
    Wang, B. -J.
    Wang, S. -Y.
    Redmon, R.
    Rodriguez, J. V.
    Singer, H. J.
    Vandegriff, J.
    Abe, S.
    Nose, M.
    Shinbori, A.
    Tanaka, Y. -M.
    UeNo, S.
    [J]. SPACE SCIENCE REVIEWS, 2019, 215 (01)
  • [2] Quasi-perpendicular shock structure and processes
    Bale, SD
    Balikhin, MA
    Horbury, TS
    Krasnoselskikh, VV
    Kucharek, H
    Möbius, E
    Walker, SN
    Balogh, A
    Burgess, D
    Lembège, B
    Lucek, EA
    Scholer, M
    Schwartz, SJ
    Thomsen, MF
    [J]. SPACE SCIENCE REVIEWS, 2005, 118 (1-4) : 161 - 203
  • [3] Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock
    Balikhin, MA
    deWit, TD
    Alleyne, HSK
    Wolliscroft, LJC
    Walker, SN
    Krasnoselskikh, V
    MierJedrzejeowicz, WAC
    Baumjohann, W
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (07) : 787 - 790
  • [4] Chanteur G., 1998, ISSI SCI REPORTS SER, V1, P349
  • [5] Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock
    Dimmock, A. P.
    Balikhin, M. A.
    Walker, S. N.
    Pope, S. A.
    [J]. ANNALES GEOPHYSICAE, 2013, 31 (08) : 1387 - 1395
  • [6] Dunlop M. W., 1988, ADV SPACE RES, V8, P273, DOI DOI 10.1016/0273-1177(88)90141-X
  • [7] The Axial Double Probe and Fields Signal Processing for the MMS Mission
    Ergun, R. E.
    Tucker, S.
    Westfall, J.
    Goodrich, K. A.
    Malaspina, D. M.
    Summers, D.
    Wallace, J.
    Karlsson, M.
    Mack, J.
    Brennan, N.
    Pyke, B.
    Withnell, P.
    Torbert, R.
    Macri, J.
    Rau, D.
    Dors, I.
    Needell, J.
    Lindqvist, P. -A.
    Olsson, G.
    Cully, C. M.
    [J]. SPACE SCIENCE REVIEWS, 2016, 199 (1-4) : 167 - 188
  • [8] Eriksson AndersI., 1998, ISSI Scientific Reports Series, V1, P5
  • [9] Harvey C.C., 1998, ANAL METHODS MULTISP, P307
  • [10] Hull A., 2024, Figshare, DOI [10.6084/m9.figshare.24993429, DOI 10.6084/M9.FIGSHARE.24993429]