Hierarchical null controllability of a semilinear degenerate parabolic equation with a gradient term

被引:0
作者
Djomegne, Landry [1 ]
Kenne, Cyrille [2 ,3 ]
Dorville, Rene [3 ]
Zongo, Pascal [3 ]
机构
[1] Univ Dschang, Dept Math & Comp Sci, Dschang, Cameroon
[2] Univ Antilles, Lab LAMIA, Pointe A Pitre, Guadeloupe, France
[3] Univ Antilles, UFR STE & IUT, Lab L3MA, Schoelcher, Martinique, France
关键词
Degenerate parabolic system; Carleman inequality; null controllability; Stackelberg-Nash strategy; STACKELBERG; SYSTEMS;
D O I
10.1080/02331934.2024.2394608
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we apply a hierarchical strategy to a semilinear weakly degenerate parabolic equation with non-linearity that depends on the solution of the system and the spatial derivative of the solution. We use the Stackelberg-Nash strategy with one leader aiming to drive the solution to zero and two followers intended to solve a Nash equilibrium corresponding to a bi-objective optimal control problem. Since the system is semilinear, the functionals are not convex in general. To overcome this difficulty, we first prove the existence and uniqueness of the Nash quasi-equilibrium, which is a weaker formulation of the Nash equilibrium. Next, with additional conditions, we establish the equivalence between the concepts of Nash quasi-equilibrium and Nash equilibrium. We establish a suitable Carleman inequality for the adjoint system and then an observability inequality. Based on this observability inequality, we prove the null controllability of the linearized system. Then, using Kakutani's fixed point Theorem, we demonstrate the null controllability of the main system.
引用
收藏
页数:41
相关论文
共 42 条
[1]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[2]   Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls [J].
Araruna, F. D. ;
Fernandez-Cara, E. ;
da Silva, L. C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (07)
[3]   Stackelberg-Nash null controllability for some linear and semilinear degenerate parabolic equations [J].
Araruna, F. D. ;
Araujo, B. S. V. ;
Fernandez-Cara, E. .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (03)
[4]   New results on the Stackelberg-Nash exact control of linear parabolic equations [J].
Araruna, F. D. ;
Fernandez-Cara, E. ;
Guerrero, S. ;
Santos, M. C. .
SYSTEMS & CONTROL LETTERS, 2017, 104 :78-85
[5]   STACKELBERG-NASH EXACT CONTROLLABILITY FOR LINEAR AND SEMILINEAR PARABOLIC EQUATIONS [J].
Araruna, F. D. ;
Fernandez-Cara, E. ;
Santos, M. C. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) :835-856
[6]   HIERARCHICAL EXACT CONTROLLABILITY OF HYPERBOLIC EQUATIONS AND DUNFORD-PETTIS? THEOREM [J].
Araruna, Fagner Dias ;
Fernandez-Cara, Enrique ;
da Silva, Luciano Cipriano .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (5-6) :505-536
[7]   Hierarchic Control for the Wave Equation [J].
Araruna, Fagner Dias ;
Fernandez-Cara, Enrique ;
da Silva, Luciano Cipriano .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) :264-288
[8]  
Birba M., 2016, Electr J Differ Equ, V2016, P1
[9]   STACKELBERG-NASH NULL CONTROLLABILITY OF HEAT EQUATION WITH GENERAL DYNAMIC BOUNDARY CONDITIONS [J].
Boutaayamou, Idriss ;
Maniar, Lahcen ;
Oukdach, Omar .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, :1285-1307
[10]   Carleman estimates for a class of degenerate parabolic operators [J].
Cannarsa, P. ;
Martinez, P. ;
Vancostenoble, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :1-19