Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions

被引:13
|
作者
Jin, Zhuoying [1 ]
Mi, Shijie [1 ]
Zhou, Dezhi [2 ]
Zhu, Jizhen [1 ]
Schirru, Andrea [3 ]
Zhao, Wenbin [1 ]
Qian, Yong [1 ]
Lucchini, Tommaso [3 ]
Lu, Xingcai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Power Machinery MOE, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, UM SJTU Joint Inst, Shanghai 200240, Peoples R China
[3] Politecn Milan, Dept Energy, Via Lambruschini 4, I-20156 Milan, Italy
基金
中国国家自然科学基金;
关键词
Ammonia-diesel dual-fuel engine; Combustion and emission analysis; High ammonia energy ratio; Optimization strategy; INJECTION; SCIENCE;
D O I
10.1016/j.apenergy.2024.123894
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ammonia is a promising carbon-free fuel for internal combustion engine to reduce greenhouse gas and meet more strict emissions regulations. Based on an ammonia-diesel dual-fuel engine with ammonia port injection, this study conducted detailed analysis for combustion and emission characteristics by three dimensional numerical simulations based on OpenFOAM and Lib-ICE codes, which are validated through experimental data with different ammonia energy ratios and diesel injection times. The effects of ammonia energy ratio (30%, 50%, 70%) for combustion and emission are analyzed in detail through energy distribution, heat release analysis, equivalence ratio vs temperature maps and key scalar distribution maps. Results show 70% ammonia energy ratio condition achieves fastest combustion rate in later premixed combustion stage between CA50-CA90 due to higher ammonia equivalence ratio and lowest N 2 O emissions due to the high-temperature flame front beneficial for thermal decomposition of N 2 O, indicating the huge application potential of high ammonia energy ratio in dual-fuel engines. Besides, equivalence ratio vs temperature maps indicate that stoichiometric or richer and hightemperature (1500 K -2500 K) combustion condition is beneficial for emissions reduction. Based on the 70% ammonia energy ratio condition, combustion acceleration in the primary combustion stage between CA10-CA50 through improvement of initial reaction activity and unburned NH 3 reduction are the key points for enhancing combustion in initial stage and decreasing incomplete combustion loss. Adjustment of diesel injection time and hydrogen introduction are then applied as optimization strategies. Final comprehensive comparison indicates hydrogen introduction is more proper, which has similar combustion acceleration effectiveness in primary combustion stage, but higher reduction effectiveness for unburned NH 3 with lower cost of NOx and PRR increase comparing with advanced SOI strategy. Only 10% hydrogen introduction achieves 30.43% combustion acceleration in primary combustion stage and 50.79% unburned NH 3 reduction comparing with the original base case.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Combustion and Emission Characteristics of an Ammonia-Diesel Dual-Fuel Engine under High Ammonia Substitution Ratios
    Zhang, Shouzhen
    Yang, Rui
    Tang, Qinglong
    Lv, Zhijie
    Liu, Haifeng
    Yue, Zongyu
    Yao, Mingfa
    ENERGY & FUELS, 2025, 39 (13) : 6559 - 6571
  • [2] Experimental study on the combustion and emission characteristics of ammonia-diesel dual fuel engine under high ammonia energy ratio conditions
    Zheng, Liang
    Mi, Shijie
    Li, Hongmei
    Tan, Xiaoxing
    Qian, Yong
    Feng, Mingzhi
    Lu, Xingcai
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [3] Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine
    Jin, Shouying
    Wu, Binyang
    Zi, Zhenyuan
    Yang, Puze
    Shi, Taifeng
    Zhang, Junhong
    FUEL, 2023, 341
  • [4] The characteristics analysis and feasible improvement strategy evaluation for ammonia-diesel dual-fuel engine under heavy load and high ammonia ratio conditions
    Jin, Zhuoying
    Mi, Shijie
    Zhou, Dezhi
    Qian, Yong
    Lu, Xingcai
    FUEL, 2025, 383
  • [5] A quantitative study on the combustion and emission characteristics of an Ammonia-Diesel Dual-fuel (ADDF) engine
    Pei, Yiqiang
    Wang, Decheng
    Jin, Shouying
    Gu, Yuncheng
    Wu, Chunling
    Wu, Binyang
    FUEL PROCESSING TECHNOLOGY, 2023, 250
  • [6] Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine
    Shin, Jisoo
    Park, Sungwook
    ENERGY CONVERSION AND MANAGEMENT, 2023, 284
  • [7] Study on the effect of turbulent jet combustion chamber on combustion characteristics at different ammonia energy ratio and optimization of an ammonia-diesel dual-fuel engine
    Yang, Puze
    Luo, Yinmi
    Jin, Shouying
    Zi, Zhenyuan
    Wu, Binyang
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 112
  • [8] Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy
    Shin, Jisoo
    Park, Sungwook
    ENERGY, 2024, 289
  • [9] Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes
    Nie, Xuexuan
    Bi, Yuhua
    Shen, Lizhong
    Lei, Jilin
    Wan, Mingding
    Wang, Zhengjiang
    Liu, Shaohua
    Huang, Fenlian
    FUEL, 2024, 371
  • [10] Flame characteristics and abnormal combustion of ammonia-diesel dual-fuel engine with considering ammonia energy fractions
    Chen, Lin
    Zhao, Wenkai
    Zhang, Ren
    Wei, Haiqiao
    Jiaying, Pan
    APPLIED THERMAL ENGINEERING, 2024, 245