Compton Amplitude for Rotating Black Hole from QFT

被引:11
作者
Cangemi, Lucile [1 ]
Chiodaroli, Marco [1 ]
Johansson, Henrik [1 ,2 ,3 ]
Ochirov, Alexander [4 ,5 ]
Pichini, Paolo [1 ,6 ]
Skvortsov, Evgeny [7 ,8 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
[2] Stockholm Univ, Nordita, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
[5] Royal Inst Great Britain, London Inst Math Sci, 21 Albemarle St, London W1S 4BS, England
[6] Queen Mary Univ London, Ctr Theoret Phys, Dept Phys & Astron, Mile End Rd, London E1 4NS, England
[7] Univ Mons, Serv Phys Univers Champs & Gravitat, 20 Pl Parc, Mons 7000, Belgium
[8] Lebedev Inst Phys, Leninsky Ave 53, Moscow 119991, Russia
基金
瑞典研究理事会; 欧洲研究理事会; 英国科学技术设施理事会;
关键词
TREE-LEVEL UNITARITY; ARBITRARY SPIN; LAGRANGIAN FORMULATION; PERTURBATIONS; FIELD; EQUATIONS;
D O I
10.1103/PhysRevLett.133.071601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a candidate tree-level gravitational Compton amplitude for a rotating Kerr black hole, for any quantum spin s 1/4 0, 1/2, 1, ..., infinity, from which we extract the corresponding classical amplitude to all orders in the spin vector S'`. We use multiple insights from massive higher-spin quantum field theory, such as massive gauge invariance and improved behavior in the massless limit. A chiral-field approach is particularly helpful in ensuring correct degrees of freedom, and for writing down compact off-shell interactions for general spin. The simplicity of the interactions is echoed in the structure of the spin-s Compton amplitude, for which we use homogeneous symmetric polynomials of the spin variables. Where possible, we compare to the general-relativity results in the literature, available up to eighth order in spin.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Eccentric self-forced inspirals into a rotating black hole
    Lynch, Philip
    van de Meent, Maarten
    Warburton, Niels
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (14)
  • [42] Circular motion around a regular rotating Hayward black hole
    Khan, Saeed Ullah
    Ren, Jingli
    Rayimbaev, Javlon
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (11)
  • [43] Shadow of a Kaluza-Klein rotating dilaton black hole
    Amarilla, Leonardo
    Eiroa, Ernesto F.
    [J]. PHYSICAL REVIEW D, 2013, 87 (04):
  • [44] Rotating black hole shadow in perfect fluid dark matter
    Hou, Xian
    Xu, Zhaoyi
    Wang, Jiancheng
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (12):
  • [45] Black hole superradiance from Kerr/CFT
    Bredberg, Irene
    Hartman, Thomas
    Song, Wei
    Strominger, Andrew
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [46] Fifty Years of Energy Extraction from Rotating Black Hole: Revisiting Magnetic Penrose Process
    Tursunov, Arman
    Dadhich, Naresh
    [J]. UNIVERSE, 2019, 5 (05)
  • [47] The rotating black hole interior: Insights from gravitational collapse in AdS3 spacetime
    Pandya, Alex
    Pretorius, Frans
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [48] QUANTUM AMPLITUDES IN BLACK-HOLE EVAPORATION: COMPLEX APPROACH AND SPIN-0 AMPLITUDE
    Farley, A. N. St J.
    D'Eath, P. D.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (02): : 133 - 159
  • [49] Primordial gravitational waves from black hole evaporation in standard and nonstandard cosmologies
    Ireland, Aurora
    Profumo, Stefano
    Scharnhorst, Jordan
    [J]. PHYSICAL REVIEW D, 2023, 107 (10)
  • [50] Extracting linear and nonlinear quasinormal modes from black hole merger simulations
    Cheung, Mark Ho-Yeuk
    Berti, Emanuele
    Baibhav, Vishal
    Cotesta, Roberto
    [J]. PHYSICAL REVIEW D, 2024, 109 (04)