Compton Amplitude for Rotating Black Hole from QFT

被引:11
作者
Cangemi, Lucile [1 ]
Chiodaroli, Marco [1 ]
Johansson, Henrik [1 ,2 ,3 ]
Ochirov, Alexander [4 ,5 ]
Pichini, Paolo [1 ,6 ]
Skvortsov, Evgeny [7 ,8 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden
[2] Stockholm Univ, Nordita, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Hannes Alfvens Vag 12, S-10691 Stockholm, Sweden
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
[5] Royal Inst Great Britain, London Inst Math Sci, 21 Albemarle St, London W1S 4BS, England
[6] Queen Mary Univ London, Ctr Theoret Phys, Dept Phys & Astron, Mile End Rd, London E1 4NS, England
[7] Univ Mons, Serv Phys Univers Champs & Gravitat, 20 Pl Parc, Mons 7000, Belgium
[8] Lebedev Inst Phys, Leninsky Ave 53, Moscow 119991, Russia
基金
瑞典研究理事会; 欧洲研究理事会; 英国科学技术设施理事会;
关键词
TREE-LEVEL UNITARITY; ARBITRARY SPIN; LAGRANGIAN FORMULATION; PERTURBATIONS; FIELD; EQUATIONS;
D O I
10.1103/PhysRevLett.133.071601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a candidate tree-level gravitational Compton amplitude for a rotating Kerr black hole, for any quantum spin s 1/4 0, 1/2, 1, ..., infinity, from which we extract the corresponding classical amplitude to all orders in the spin vector S'`. We use multiple insights from massive higher-spin quantum field theory, such as massive gauge invariance and improved behavior in the massless limit. A chiral-field approach is particularly helpful in ensuring correct degrees of freedom, and for writing down compact off-shell interactions for general spin. The simplicity of the interactions is echoed in the structure of the spin-s Compton amplitude, for which we use homogeneous symmetric polynomials of the spin variables. Where possible, we compare to the general-relativity results in the literature, available up to eighth order in spin.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Motion of a rotating black hole in a homogeneous electromagnetic field
    Frolov, Valeri P.
    PHYSICAL REVIEW D, 2024, 109 (06)
  • [22] Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole
    Harms, Enno
    Lukes-Gerakopoulos, Georgios
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [23] Gravitational lensing by a stable rotating regular black hole
    Xie, Chen-Hao
    Zhang, Yu
    Sun, Qi
    Li, Qi-Quan
    Duan, Peng-Fei
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [24] Graviton emission in the bulk by a simply rotating black hole
    Kanti, P.
    Kodama, H.
    Konoplya, R. A.
    Pappas, N.
    Zhdenko, A.
    PHYSICAL REVIEW D, 2009, 80 (08):
  • [25] Shadow cast by a rotating black hole with anisotropic matter
    Lee, Bum-Hoon
    Lee, Wonwoo
    Myung, Yun Soo
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [26] Scalar tidal response of a rotating BTZ black hole
    Bhatt, Rajendra Prasad
    Singha, Chiranjeeb
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (11):
  • [27] Shadow of rotating Horava-Lifshitz black hole
    Atamurotov, Farruh
    Abdujabbarov, Ahmadjon
    Ahmedov, Bobomurat
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 348 (01) : 179 - 188
  • [28] Rotating black hole mimicker surrounded by the string cloud
    Yang, Yi
    Liu, Dong
    Ovgun, Ali
    Lambiase, Gaetano
    Long, Zheng-Wen
    PHYSICAL REVIEW D, 2024, 109 (02)
  • [29] An exact solution for a rotating black hole in modified gravity
    Filippini, Francesco
    Tasinato, Gianmassimo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (01):
  • [30] Black hole shadow of a rotating polytropic black hole by the Newman-Janis algorithm without complexification
    Contreras, Ernesto
    Ramirez-Velasquez, J. M.
    Rincon, Angel
    Panotopoulos, Grigoris
    Bargueno, Pedro
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (09):