Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy

被引:10
|
作者
Zhang, Chengzhuo [1 ,2 ]
Yang, Shaohui [2 ]
Dai, Xianggang [3 ,4 ]
Tu, Yongqiang [2 ]
Du, Zhichang [2 ]
Wu, Xiaobo [3 ,4 ]
Huang, Yan [2 ]
Fan, Jianyu [2 ]
Hong, Zhanyong [1 ,3 ,4 ]
Jiang, Tao [1 ,3 ,4 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Guangzhou Inst Blue Energy, Guangzhou 510555, Peoples R China
[2] Jimei Univ, Coll Marine Equipment & Mech Engn, Xiamen 361021, Peoples R China
[3] Chinese Acad Sci, Ctr High Entropy Energy & Syst, Beijing Inst Nanoenergy & Nanosyst, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Engn, Beijing 100049, Peoples R China
关键词
Triboelectric nanogenerators; Hybrid nanogenerator; Oscillating water column; Marine Internet of Things;
D O I
10.1016/j.nanoen.2024.109929
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) have been widely used in energy harvesting from low-frequency, irregular motions due to their unique characteristics and excellent electromechanical conversion efficiency. Harvesting ocean energy to build a marine Internet of Things (MIoTs) has become an important research field for TENGs. However, the output power density of TENGs must be further enhanced for promoting their practical applications, by effective means such as the coupling of TENGs and electromagnetic generators (EMGs). Herein, we report a triboelectric-electromagnetic hybrid nanogenerator (TEH-NG) for self-powered ocean buoy to harvest water wave energy efficiently for the first time. The buoy consists of a self-engineered wave energy converter for converting wave energy into simple turbomachinery energy through the pressure difference created by the relative motion, and a TEH-NG for converting the turbomachinery energy into electrical energy. The TENG delivers an average output power of 3.40 mW (with power density of 141.7 W m- 3), and the EMG achieves an average power of 0.04 W (with power density of 400.0 W m-3). The excellent performance of the TEH-NG makes it a potential candidate for constructing the MIoTs to achieve distributed marine environmental monitoring networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Soft Ball-Based Triboelectric-Electromagnetic Hybrid Nanogenerators for Wave Energy Harvesting
    Pang, Yaokun
    Fang, Yuhui
    Su, Jiaji
    Wang, Huigang
    Tan, Yeqiang
    Cao, Changyong
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (06)
  • [2] Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications
    Jurado, Ulises Tronco
    Pu, Suan Hui
    White, Neil M.
    NANO ENERGY, 2020, 72
  • [3] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, 17 (10) : 8926 - 8941
  • [4] Airflow-Driven Triboelectric-Electromagnetic Hybridized Nanogenerator for Biomechanical Energy Harvesting
    Alves, Tiago
    Rodrigues, Catia
    Callaty, Carlos
    Duarte, Candido
    Ventura, Joao
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (19)
  • [5] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (21):
  • [6] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [7] Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics
    Fan, Feng Ru
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2016, 28 (22) : 4283 - 4305
  • [8] An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor
    Wang, Peihong
    Pan, Lun
    Wang, Jiyu
    Xu, Minyi
    Dai, Guozhang
    Zou, Haiyang
    Dong, Kai
    Wang, Zhong Lin
    ACS NANO, 2018, 12 (09) : 9433 - 9440
  • [9] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023,
  • [10] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)