Automatic Speech Recognition Advancements for Indigenous Languages of the Americas

被引:1
|
作者
Romero, Monica [1 ]
Gomez-Canaval, Sandra [1 ]
Torre, Ivan G. [1 ]
机构
[1] Univ Politecn Madrid, ETS Comp Syst Engn, Madrid 28031, Spain
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
automatic speech recognition; natural language processing; low-resource languages; Indigenous languages; NeurIPS; LOW-RESOURCE LANGUAGES;
D O I
10.3390/app14156497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities in America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed the task of training automatic speech recognition (ASR) systems for five Indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we describe the fine-tuning of a state-of-the-art ASR model for each target language, using approximately 36.65 h of transcribed speech data from diverse sources enriched with data augmentation methods. We systematically investigate, using a Bayesian search, the impact of the different hyperparameters on the Wav2vec2.0 XLS-R variants of 300 M and 1 B parameters. Our findings indicate that data and detailed hyperparameter tuning significantly affect ASR accuracy, but language complexity determines the final result. The Quechua model achieved the lowest character error rate (CER) (12.14), while the Kotiria model, despite having the most extensive dataset during the fine-tuning phase, showed the highest CER (36.59). Conversely, with the smallest dataset, the Guarani model achieved a CER of 15.59, while Bribri and Wa'ikhana obtained, respectively, CERs of 34.70 and 35.23. Additionally, Sobol' sensitivity analysis highlighted the crucial roles of freeze fine-tuning updates and dropout rates. We release our best models for each language, marking the first open ASR models for Wa'ikhana and Kotiria. This work opens avenues for future research to advance ASR techniques in preserving minority Indigenous languages.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improving Speech Synthesis by Automatic Speech Recognition and Speech Discriminator
    Huang, Li-Yu
    Chen, Chia-Ping
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (01) : 189 - 200
  • [32] Collecting Resources in Sub-Saharan African Languages for Automatic Speech Recognition: a Case Study of Wolof
    Gauthier, Elodie
    Besacier, Laurent
    Voisin, Sylvie
    Melese, Michael
    Elingui, Pascal Uriel
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 3863 - 3867
  • [33] Training of Automatic Speech Recognition System on Noised Speech
    Prodeus, Arkadiy
    Kukharicheva, Kateryna
    2016 4TH INTERNATIONAL CONFERENCE ON METHODS AND SYSTEMS OF NAVIGATION AND MOTION CONTROL (MSNMC), 2016, : 221 - 223
  • [34] SPEECH DISFLUENCIES MODELING IN AUTOMATIC SPEECH RECOGNITION SYSTEMS
    Vasilisa, Verkhodanova O.
    Alexey, Karpov A.
    TOMSK STATE UNIVERSITY JOURNAL, 2012, (363): : 10 - +
  • [35] Evaluation of an Automatic Speech Recognition Platform for Dysarthric Speech
    Calvo, Irene
    Tropea, Peppino
    Vigano, Mauro
    Scialla, Maria
    Cavalcante, Agnieszka B.
    Grajzer, Monika
    Gilardone, Marco
    Corbo, Massimo
    FOLIA PHONIATRICA ET LOGOPAEDICA, 2021, 73 (05) : 432 - 441
  • [36] On the Influence of Automatic Segmentation and Clustering in Automatic Speech Recognition
    Lopez-Otero, Paula
    Docio-Fernandez, Laura
    Garcia-Mateo, Carmen
    Cardenal-Lopez, Antonio
    ADVANCES IN SPEECH AND LANGUAGE TECHNOLOGIES FOR IBERIAN LANGUAGES, 2012, 328 : 49 - 58
  • [37] Towards Automatic Assessment of Aphasia Speech Using Automatic Speech Recognition Techniques
    Qin, Ying
    Lee, Tan
    Kong, Anthony Pak Hin
    Law, Sam Po
    2016 10TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2016,
  • [38] Robust automatic continuous speech recognition for 'Adi', a zero-resource indigenous language of Arunachal Pradesh
    Sasmal, Sajal
    Saring, Yang
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2022, 47 (04):
  • [40] Continual Learning in Automatic Speech Recognition
    Sadhu, Samik
    Hermansky, Hynek
    INTERSPEECH 2020, 2020, : 1246 - 1250