Upconversion nanoparticles-CuMnO2 nanoassemblies for NIR-excited imaging of reactive oxygen species in vivo

被引:1
|
作者
Yan, Shanshu [1 ]
Xing, Gaoyuan [1 ]
Yuan, Xiangyang [1 ]
Cui, Endian [1 ]
Ji, Kaixin [2 ,3 ]
Yang, Xing [2 ,3 ]
Su, Jiahao [1 ]
Mara, Dimitrije [5 ]
Tang, Jianfeng [1 ]
Zhao, Yanan [6 ]
Hu, Jie [1 ,2 ]
Liu, Jing [1 ,4 ]
机构
[1] Southwest Univ, Sch Mat & Energy, Minist Educ, Key Lab Luminescence Anal & Mol Sensing, Chongqing 400715, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Key Lab Nanomat, Fuzhou 350002, Peoples R China
[4] Southern Med Univ, Orthoped Hosp Guangdong Prov, Ctr Orthoped Surg, Dept Joint Surg,Affiliated Hosp 3, Guangzhou 510515, Peoples R China
[5] Inst Gen & Phys Chem, Studentski Trg 12-5,POB 45, Belgrade 11158, Serbia
[6] Southwest Univ, Analyt & Testing Ctr, Chongqing 400715, Peoples R China
关键词
Lanthanide-doped upconversion nanoparticles; CuMnO; 2; Ratiometric luminescent nanoprobe; Reactive oxygen species; In vitro and in vivo detection; HYDROGEN-PEROXIDE; FLUORESCENT; EMISSION; SUPEROXIDE; NANOPROBE; PROBES; SENSOR; CELLS;
D O I
10.1016/j.jcis.2024.08.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we designed a ratiometric luminescent nanoprobe based on lanthanide-doped upconversion nanoparticlesCuMnO2 2 nanoassemblies for rapid and sensitive detection of reactive oxygen species (ROS) levels in living cells and mouse. CuMnO2 2 nanosheets exhibit a wide absorption range of 300-700 nm, overlapping with the visible- light emission of upconversion nanoparticles (UCNPs), resulting in a significant upconversion luminescence quenching. In an acidic environment, H2O2 2 O 2 can promote the redox reaction of CuMnO2, 2 , leading to its dissociation from the surface of UCNPs and the restoration of upconversion luminescence. The variation in luminescence intensity ratio (UCL475/UCL450) 475 /UCL 450 ) were monitored to detect ROS levels. The H2O2 2 O 2 nanoprobe exhibited a linear response in the range of 0.314-10 mu M with a detection limit of 11.3 nM. The biological tests proved the excellent biocompatibility and low toxicity of obtained UCNPs-CuMnO2 2 nanoassemblies. This ratiometric luminescent nanoprobe was successfully applied for the detection of exogenous and endogenous ROS in live cells as well as in vivo ROS quantitation. The dual transition metal ions endow this probe efficient catalytic decomposition capabilities, and this sensing strategy broadens the application of UCNPs-based nanomaterials in the field of biological analysis and diagnosis.
引用
收藏
页码:666 / 674
页数:9
相关论文
共 50 条
  • [1] A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo
    Zhou, Yi
    Pei, Wenbo
    Zhang, Xiao
    Chen, Wangqiao
    Wu, Jiansheng
    Yao, Cheng
    Huang, Ling
    Zhang, Hua
    Huang, Wei
    Loo, Joachim Say Chye
    Zhang, Qichun
    BIOMATERIALS, 2015, 54 : 34 - 43
  • [2] Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis
    Chen, Zhaowei
    Liu, Zhen
    Li, Zhenhua
    Ju, Enguo
    Gao, Nan
    Zhou, Li
    Ren, Jinsong
    Qu, Xiaogang
    BIOMATERIALS, 2015, 39 : 15 - 22
  • [3] NIR-excited imaging of drug-induced liver injury using a superoxide-activated ratiometric upconversion luminescence nanoprobe
    Shen, Yuhan
    Zhu, Yuhang
    Xiao, Zhenghao
    Zhang, Qin
    Li, Yuanjun
    Li, Chengkang
    Ye, Minan
    Zhu, Chenjie
    Zhou, Yi
    TALANTA, 2024, 279
  • [4] In Vivo Imaging of Reactive Oxygen Species in a Murine Wound Model
    Rabbani, Piul S.
    Abdou, Salma A.
    Sultan, Darren L.
    Kwong, Jennifer
    Duckworth, April
    Ceradini, Daniel J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (141):
  • [5] Optics-Free Chip-Scale Intraoperative Imaging Using NIR-Excited Upconverting Nanoparticles
    Najafiaghdam, Hossein
    Pedroso, Cassio C. S.
    Cohen, Bruce E.
    Anwar, Mekhail
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (02) : 312 - 323
  • [6] Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species
    Zhen, Xu
    Zhang, Chengwu
    Xie, Chen
    Miao, Qingqing
    Lim, Kah Leong
    Pu, Kanyi
    ACS NANO, 2016, 10 (06) : 6400 - 6409
  • [7] Imaging of reactive oxygen species generated in vivo
    Togashi, Hitoshi
    Aoyama, Masaaki
    Oikawa, Kazuo
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (03) : 1375 - 1379
  • [8] Ratiometric Reactive Oxygen Species Nanoprobe for Noninvasive In Vivo Imaging of Subcutaneous Inflammation/Infection
    Zhou, Jun
    Weng, Hong
    Huang, Yihui
    Gu, Yueqing
    Tang, Liping
    Hu, Wenjing
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2016, 12 (08) : 1679 - 1687
  • [9] Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana
    Prasad, Ankush
    Sedlarova, Michaela
    Balukova, Anastasiia
    Rac, Marek
    Pospisil, Pavel
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [10] In vivo optical imaging of reactive oxygen species (ROS)-related non-cancerous diseases
    Gu, Wenxing
    Li, Shenhua
    Yang, Yajie
    Wang, Shumin
    Li, Kai
    Zhao, Yongsheng
    Mu, Jing
    Chen, Xiaoyuan
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 169