Hybrid Multivariate Machine Learning Models for Streamflow Forecasting: A Two-Stage Decomposition-Reconstruction Framework

被引:1
|
作者
Jin, Aohan [1 ]
Wang, Quanrong [1 ,2 ]
Zhou, Renjie [3 ]
Shi, Wenguang [1 ]
Qiao, Xiangyu [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Hubei, Peoples R China
[2] Minist Ecol & Environm, State Environm Protect Key Lab Source Apportionmen, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Sam Houston State Univ, Dept Environm & Geosci, Huntsville, TX 77340 USA
基金
中国国家自然科学基金;
关键词
Daily streamflow forecasting; Decomposition algorithm; Boundary effects; Sample entropy; Machine learning; Two-stage decomposition reconstruction forecasting (TSDRF) framework; WAVELET TRANSFORM; FLOW; REGRESSION; RUNOFF; PREDICTION; NETWORKS; EMD;
D O I
10.1061/JHYEFF.HEENG-6254
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Robust and accurate streamflow forecasting holds significant importance for flood mitigation, drought warning and water resource management. On account of the intricate nonlinear and nonstationary nature of streamflow time series, numerous decomposition-based approaches have been proposed and integrated with other architectures. However, directly decomposing the entire streamflow data set introduces future information into the decomposition and reconstruction processes, while decomposing calibration and validation sets independently can result in undesired boundary effects. Besides, the signal decomposition techniques tend to generate a large number of decomposed modes. Using all these modes directly as input variables results in intricate forecasting models and is prone to overfitting. To address these challenges, we developed a novel two-stage decomposition reconstruction forecasting (TSDRF) framework by coupling sequentially decomposition technique, sample entropy and multivariate machine learning methods in this study. This newly proposed TSDRF framework is assessed at three hydrologic stations from Yellow River, China. Furthermore, the TSDRF framework is also compared with the two-stage decomposition reconstruction hindcasting (TSDRH) framework under different lead times. The findings suggest that TSDRF framework based on variation mode decomposition (VMD) algorithm outperform other models in terms of mitigating boundary effects, minimizing computational costs, and enhancing generalization capabilities across various lead times.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Sourcing CHIRPS precipitation data for streamflow forecasting using intrinsic time-scale decomposition based machine learning models
    Wang, Maofa
    Rezaie-Balf, Mohammad
    Naganna, Sujay Raghavendra
    Yaseen, Zaher Mundher
    HYDROLOGICAL SCIENCES JOURNAL, 2021, 66 (09) : 1437 - 1456
  • [22] A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
    Yu, Wenqing
    Wang, Xingju
    Jiang, Xin
    Zhao, Ranhang
    Zhao, Shen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 406 - 421
  • [23] A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs
    Wenqing Yu
    Xingju Wang
    Xin Jiang
    Ranhang Zhao
    Shen Zhao
    Environmental Science and Pollution Research, 2024, 31 : 262 - 279
  • [24] Enhancing streamflow prediction in the Wujiang River basin: a two-stage decomposition approach with deep learning integration
    Zhao, Ruichao
    Zheng, Zhiwen
    JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (11) : 5683 - 5697
  • [25] Physics-enhanced machine learning models for streamflow discharge forecasting
    Zhao, Ying
    Chadha, Mayank
    Barthlow, Dakota
    Yeates, Elissa
    Mcknight, Charles J.
    Memarsadeghi, Natalie P.
    Gugaratshan, Guga
    Todd, Michael D.
    Hu, Zhen
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (10) : 2506 - 2537
  • [26] Forecasting of typhoon wave based on hybrid machine learning models
    Gong, Yijie
    Dong, Sheng
    Wang, Zhifeng
    OCEAN ENGINEERING, 2022, 266
  • [27] A hybrid two-stage financial stock forecasting algorithm based on clustering and ensemble learning
    Xu, Ying
    Yan, Cuijuan
    Peng, Shaoliang
    Nojima, Yusuke
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3852 - 3867
  • [28] Machine Learning-Based Two-Stage Data Selection Scheme for Long-Term Influenza Forecasting
    Moon, Jaeuk
    Jung, Seungwon
    Park, Sungwoo
    Hwang, Eenjun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (03): : 2945 - 2959
  • [29] An explainable two-stage machine learning approach for precipitation forecast
    Senocak, Ali Ulvi Galip
    Yilmaz, M. Tugrul
    Kalkan, Sinan
    Yucel, Ismail
    Amjad, Muhammad
    JOURNAL OF HYDROLOGY, 2023, 627
  • [30] A hybrid statistical and machine learning based forecasting framework for the energy sector
    Baratsas, Stefanos
    Iseri, Funda
    Pistikopoulos, Efstratios N.
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 188