Hybrid Multivariate Machine Learning Models for Streamflow Forecasting: A Two-Stage Decomposition-Reconstruction Framework

被引:1
|
作者
Jin, Aohan [1 ]
Wang, Quanrong [1 ,2 ]
Zhou, Renjie [3 ]
Shi, Wenguang [1 ]
Qiao, Xiangyu [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Hubei, Peoples R China
[2] Minist Ecol & Environm, State Environm Protect Key Lab Source Apportionmen, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Sam Houston State Univ, Dept Environm & Geosci, Huntsville, TX 77340 USA
基金
中国国家自然科学基金;
关键词
Daily streamflow forecasting; Decomposition algorithm; Boundary effects; Sample entropy; Machine learning; Two-stage decomposition reconstruction forecasting (TSDRF) framework; WAVELET TRANSFORM; FLOW; REGRESSION; RUNOFF; PREDICTION; NETWORKS; EMD;
D O I
10.1061/JHYEFF.HEENG-6254
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Robust and accurate streamflow forecasting holds significant importance for flood mitigation, drought warning and water resource management. On account of the intricate nonlinear and nonstationary nature of streamflow time series, numerous decomposition-based approaches have been proposed and integrated with other architectures. However, directly decomposing the entire streamflow data set introduces future information into the decomposition and reconstruction processes, while decomposing calibration and validation sets independently can result in undesired boundary effects. Besides, the signal decomposition techniques tend to generate a large number of decomposed modes. Using all these modes directly as input variables results in intricate forecasting models and is prone to overfitting. To address these challenges, we developed a novel two-stage decomposition reconstruction forecasting (TSDRF) framework by coupling sequentially decomposition technique, sample entropy and multivariate machine learning methods in this study. This newly proposed TSDRF framework is assessed at three hydrologic stations from Yellow River, China. Furthermore, the TSDRF framework is also compared with the two-stage decomposition reconstruction hindcasting (TSDRH) framework under different lead times. The findings suggest that TSDRF framework based on variation mode decomposition (VMD) algorithm outperform other models in terms of mitigating boundary effects, minimizing computational costs, and enhancing generalization capabilities across various lead times.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
    Peng, Tian
    Zhou, Jianzhong
    Zhang, Chu
    Zheng, Yang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 153 : 589 - 602
  • [12] Hybrid deep learning models for multivariate forecasting of global horizontal irradiation
    Vakitbilir, Nuray
    Hilal, Adnan
    Direkoglu, Cem
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 8005 - 8026
  • [13] Ensemble framework for daily carbon dioxide emissions forecasting based on the signal decomposition-reconstruction model
    Song, Chao
    Wang, Tao
    Chen, Xiaohong
    Shao, Quanxi
    Zhang, Xianqi
    APPLIED ENERGY, 2023, 345
  • [14] Hybrid river stage forecasting based on machine learning with empirical mode decomposition
    Heddam, Salim
    Vishwakarma, Dinesh Kumar
    Abed, Salwan Ali
    Sharma, Pankaj
    Al-Ansari, Nadhir
    Alataway, Abed
    Dewidar, Ahmed Z.
    Mattar, Mohamed A.
    APPLIED WATER SCIENCE, 2024, 14 (03)
  • [15] A hybrid machine learning framework for forecasting house price
    Zhan, Choujun
    Liu, Yonglin
    Wu, Zeqiong
    Zhao, Mingbo
    Chow, Tommy W. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 233
  • [16] A Comparative Assessment of Machine Learning and Deep Learning Models for the Daily River Streamflow Forecasting
    Danesh, Malihe
    Gharehbaghi, Amin
    Mehdizadeh, Saeid
    Danesh, Amirhossein
    WATER RESOURCES MANAGEMENT, 2024, : 1911 - 1930
  • [17] Two-stage meta-ensembling machine learning model for enhanced water quality forecasting
    Heydari, Sepideh
    Nikoo, Mohammad Reza
    Mohammadi, Ali
    Barzegar, Rahim
    JOURNAL OF HYDROLOGY, 2024, 641
  • [18] A Two-Stage Hybrid Extreme Learning Model for Short-Term Traffic Flow Forecasting
    Cui, Zhihan
    Huang, Boyu
    Dou, Haowen
    Cheng, Yan
    Guan, Jitian
    Zhou, Teng
    MATHEMATICS, 2022, 10 (12)
  • [19] Hybrid machine learning system based on multivariate data decomposition and feature selection for improved multitemporal evapotranspiration forecasting
    Lee, Jinwook
    Bateni, Sayed M.
    Jun, Changhyun
    Heggy, Essam
    Jamei, Mehdi
    Kim, Dongkyun
    Ghafouri, Hamid Reza
    Deenik, Jonathan L.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [20] A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters
    Zhu, Xiaotong
    Guo, Hongwei
    Huang, Jinhui Jeanne
    Tian, Shang
    Zhang, Zijie
    JOURNAL OF HYDROLOGY, 2023, 619