Exploring Advanced CRISPR Delivery Technologies for Therapeutic Genome Editing

被引:7
作者
Rostami, Neda [1 ]
Gomari, Mohammad Mahmoudi [2 ]
Choupani, Edris [3 ]
Abkhiz, Shadi [2 ]
Fadaie, Mahmood [4 ]
Eslami, Seyed Sadegh [2 ,5 ]
Mahmoudi, Zahra [2 ]
Zhang, Yapei [6 ]
Puri, Madhu [6 ]
Monfared, Fatemeh Nafe [7 ]
Demireva, Elena [6 ]
Uversky, Vladimir N. [8 ,9 ]
Smith, Bryan Ronain [6 ,10 ]
Bencherif, Sidi A. [11 ,12 ,13 ]
机构
[1] Arak Univ, Dept Chem Engn, Arak 3848177584, Iran
[2] Iran Univ Med Sci, Fac Allied Med, Dept Med Biotechnol, Tehran 1449614535, Iran
[3] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA
[4] Isfahan Univ Med Sci, Sch Med, Dept Genet & Mol Biol, Esfahan 8174673461, Iran
[5] Baker Heart & Diabet Inst, Mol Prote Lab, Melbourne, Vic 3004, Australia
[6] Michigan State Univ, Inst Quantitat Hlth Sci & Engn, Dept Biomed Engn, E Lansing, MI 48824 USA
[7] Univ Tehran Med Sci, Sch Publ Hlth, Dept Virol, Tehran 1416634793, Iran
[8] Univ S Florida, Morsani Coll Med, Dept Mol Med, Tampa, FL 33612 USA
[9] Univ S Florida, USF Hlth Byrd Alzheimers Res Inst, Morsani Coll Med, Tampa, FL 33612 USA
[10] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[11] Northeastern Univ, Dept Chem Engn & Bioengn, Boston, MA 02115 USA
[12] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[13] Univ Technol Compiegne, Sorbonne Univ, Biomech & Bioengn, UTC CNRS UMR 7338, F-60203 Compiegne, France
来源
SMALL SCIENCE | 2024年 / 4卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
biomaterials; clustered regularly interspaced short palindromic repeat; exosomes; genome editing; nanoparticles; IN-VIVO DELIVERY; INTEGRATING LENTIVIRAL VECTORS; ROLLING CIRCLE AMPLIFICATION; HOMOLOGY-DIRECTED REPAIR; DRUG-DELIVERY; NANOPARTICLE DELIVERY; GOLD NANOPARTICLES; CO-DELIVERY; VIRAL VECTORS; GENE-THERAPY;
D O I
10.1002/smsc.202400192
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The genetic material within cells plays a pivotal role in shaping the structure and function of living organisms. Manipulating an organism's genome to correct inherited abnormalities or introduce new traits holds great promise. Genetic engineering techniques offers promising pathways for precisely altering cellular genetics. Among these methodologies, clustered regularly interspaced short palindromic repeat (CRISPR), honored with the 2020 Nobel Prize in Chemistry, has garnered significant attention for its precision in editing genomes. However, the CRISPR system faces challenges when applied in vivo, including low delivery efficiency, off-target effects, and instability. To address these challenges, innovative technologies for targeted and precise delivery of CRISPR have emerged. Engineered carrier platforms represent a substantial advancement, improving stability, precision, and reducing the side effects associated with genome editing. These platforms facilitate efficient local and systemic genome engineering of various tissues and cells, including immune cells. This review explores recent advances, benefits, and challenges of CRISPR-based genome editing delivery. It examines various carriers including nanocarriers (polymeric, lipid-derived, metallic, and bionanoparticles), viral particles, virus-like particles, and exosomes, providing insights into their clinical utility and future prospects. This review examines the potential of clustered regularly interspaced short palindromic repeat (CRISPR) technology in cellular genetics, focusing on challenges like low delivery efficiency and off-target effects. It discusses innovative carriers-viral, lipid-based, polymeric particles, and exosomes-that improve stability, reduce side effects, and enhance editing capabilities, aiming to optimize CRISPR delivery for therapeutic use.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:33
相关论文
共 370 条
[1]   Biosynthesis of Multicomponent Nanoparticles with Extract of Martino (&ITVaccinium floribundum&IT Kunth) Berry: Application on Heavy Metals Removal from Water and Immobilization in Soils [J].
Abril, Mayra ;
Ruiz, Hugo ;
Cumbal, Luis H. .
JOURNAL OF NANOTECHNOLOGY, 2018, 2018
[2]   DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease [J].
Abu-Salah, Khalid M. ;
Zourob, Mohammed M. ;
Mouffouk, Fouzi ;
Alrokayan, Salman A. ;
Alaamery, Manal A. ;
Ansari, Anees A. .
SENSORS, 2015, 15 (06) :14539-14568
[3]   RNA targeting with CRISPR-Cas13 [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Essletzbichler, Patrick ;
Han, Shuo ;
Joung, Julia ;
Belanto, Joseph J. ;
Verdine, Vanessa ;
Cox, David B. T. ;
Kellner, Max J. ;
Regev, Aviv ;
Lander, Eric S. ;
Voytas, Daniel F. ;
Ting, Alice Y. ;
Zhang, Feng .
NATURE, 2017, 550 (7675) :280-+
[4]   Nanoparticles-mediated CRISPR/Cas9 delivery: Recent advances in cancer treatment [J].
Aghamiri, Shahin ;
Talaei, Sam ;
Ghavidel, Afshin Abdi ;
Zandsalimi, Farshid ;
Masoumi, Saeid ;
Hafshejani, Nahid Heidari ;
Jajarmi, Vahid .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 56
[5]   siRNA nanotherapeutics: a promising strategy for anti-HBV therapy [J].
Aghamiri, Shahin ;
Jafarpour, Ali ;
Gomari, Mohammad Mahmoudi ;
Ghorbani, Jaber ;
Rajabibazl, Masoumeh ;
Payandeh, Zahra .
IET NANOBIOTECHNOLOGY, 2019, 13 (05) :457-463
[6]   Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view [J].
Aghamiri, Shahin ;
Jafarpour, Ali ;
Malekshahi, Ziba Veisi ;
Gomari, Mohammad Mahmoudi ;
Negahdari, Babak .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (09) :14818-14827
[7]  
Agi E., 2016, J SOLID TUMORS, V6, P76
[8]   Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles [J].
Ahmad, Acieel ;
Khan, Javed Masood ;
Haque, Shafiul .
BIOCHIMIE, 2019, 160 :61-75
[9]   Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine [J].
Ali, M. Monsur ;
Li, Feng ;
Zhang, Zhiqing ;
Zhang, Kaixiang ;
Kang, Dong-Ku ;
Ankrum, James A. ;
Le, X. Chris ;
Zhao, Weian .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (10) :3324-3341
[10]  
Alyamani A, 2012, SCANNING ELECTRON MICROSCOPY, P463