Practical Considerations for RF Measurements of Cryogenic CMOS Circuits for Quantum Computing

被引:1
作者
Frolov, Daniil [1 ]
Chakraborty, Sudipto [1 ]
Underwood, Devin [1 ]
Glick, Joseph [1 ]
Timmerwilke, John [1 ]
Robertazzi, Ray [1 ]
Inoue, Ken [1 ]
Yeck, Mark [1 ]
Rosno, Pat [1 ]
Snell, Bryce [1 ]
Moertl, Daniel [1 ]
Lekuch, Scott [1 ]
DeSantis, Christopher [1 ]
Tien, Kevin [1 ]
Plouchart, Jean-Olivier [1 ]
Frank, David [1 ]
Wisnieff, Dorothy [1 ]
Bulzacchelli, John [1 ]
Baks, Chris [1 ]
Friedman, Daniel [1 ]
Gaucher, Brian [1 ]
机构
[1] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
2024 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IMS 2024 | 2024年
关键词
CMOS; RF measurements; cryogenic calibration; characterization;
D O I
10.1109/IMS40175.2024.10600328
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cryogenic CMOS control and readout electronics for quantum computing using superconducting qubits offers several potential advantages versus the use of room temperature electronics, including reduced wiring and lower cost per control channel. The development and practical implementation of such electronics at a mass-production scale for systems with tens of thousands of channels, however, requires circuit characterization in the target cryogenic use environment and with interfaces as close as possible to those that will be used in a real quantum machine. The cryogenic use environment and interfaces for test are usually far from the almost ideal conditions that can be achieved in a regular cryogenic probe station. In this paper, we describe a new testbed for the characterization of CMOS circuits at cryogenic temperatures that solves some of these problems.
引用
收藏
页码:706 / 709
页数:4
相关论文
共 7 条
[1]   Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K [J].
Bardin, Joseph C. ;
Jeffrey, Evan ;
Lucero, Erik ;
Huang, Trent ;
Das, Sayan ;
Sank, Daniel Thomas ;
Naaman, Ofer ;
Megrant, Anthony Edward ;
Barends, Rami ;
White, Ted ;
Giustina, Marissa ;
Satzinger, Kevin J. ;
Arya, Kunal ;
Roushan, Pedram ;
Chiaro, Benjamin ;
Kelly, Julian ;
Chen, Zijun ;
Burkett, Brian ;
Chen, Yu ;
Dunsworth, Andrew ;
Fowler, Austin ;
Foxen, Brooks ;
Gidney, Craig ;
Graff, Rob ;
Klimov, Paul ;
Mutus, Josh ;
McEwen, Matthew J. ;
Neeley, Matthew ;
Neill, Charles J. ;
Quintana, Chris ;
Vainsencher, Amit ;
Neven, Hartmut ;
Martinis, John .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) :3043-3060
[2]  
Chakraborty S., 2022, IEEE J. of Solid-state Circuits, V57
[3]  
Chakraborty S., 2024, S VLSI CIRC JU UNPUB
[4]  
Dunsmore J., 2012, Handbook of Microwave Component Measurements: with Advanced VNA Techniques, P172
[5]  
Kang K., 2021, P S VLSI CIRC JUN, P1
[6]   A Fully Integrated Cryo-CMOS SoC for Qubit Control in Quantum Computers Capable of State Manipulation, Readout and High-Speed Gate Pulsing of Spin Qubits in Intel 22nm FFL FinFET Technology [J].
Park, Jong-Seok ;
Subramanian, Sushil ;
Lampert, Lester ;
Mladenov, Todor ;
Klotchkov, Ilya ;
Kurian, Dileep J. ;
Juarez-Hernandez, Esdras ;
Perez-Esparza, Brando ;
Kale, Sirisha Rani ;
Beevi, Asma K. T. ;
Premaratne, Shavindra ;
Watson, Thomas ;
Suzuki, Satoshi ;
Rahman, Mustafijur ;
Timbadiya, Jaykant B. ;
Soni, Saksham ;
Pellerano, Stefano .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :208-+
[7]  
Underwood DL, 2023, Arxiv, DOI arXiv:2302.11538