Residuality ofDynamical Morphisms for Amenable Group Actions

被引:0
作者
Huczek, Dawid [1 ]
Kopacz, Sebastian [1 ]
Serafin, Jacek [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Entropy; amenable group; joinings; Ornstein's theorem; symbolic dy- namics; ENTROPY; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical Baire category approach, used in proving the finite generator theorem of Krieger, the homomorphism theorem of Sinai, and the isomorphism theorem of Ornstein, applying a similar reasoning to the case of actions of countably infinite amenable groups. In principle, we follow the lines of the paper by Burton, Keane, and Serafin ([3]), showing that measures defining homomorphisms or isomorphisms form residual subsets in suitably chosen spaces of joinings.
引用
收藏
页码:855 / 881
页数:27
相关论文
共 18 条
  • [1] Bowen L, 2012, CONTEMP MATH, V567, P67, DOI 10.1090/conm/567/11234
  • [2] MEASURE CONJUGACY INVARIANTS FOR ACTIONS OF COUNTABLE SOFIC GROUPS
    Bowen, Lewis
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) : 217 - 245
  • [3] BURTON R. M., 2000, Colloq. Math., V84/85, P307, DOI [10.4064/cm-84/85-2-307-317, DOI 10.4064/CM-84/85-2-307-317]
  • [4] BURTON R. M., 1977, Technical Report
  • [5] Folner tilings for actions of amenable groups
    Conley, Clinton T.
    Jackson, Steve C.
    Kerr, David
    Marks, Andrew S.
    Seward, Brandon
    Tucker-Drob, Robin D.
    [J]. MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 663 - 683
  • [6] A short proof of the Ornstein theorem
    Downarowicz, T.
    Serafin, J.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 587 - 597
  • [7] Tilings of amenable groups
    Downarowicz, Tomasz
    Huczek, Dawid
    Zhang, Guohua
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 747 : 277 - 298
  • [8] Glasner E, 2003, Mathematical Surveys and Monographs, V101
  • [9] Kerr D, 2016, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-319-49847-8
  • [10] Entropy and the variational principle for actions of sofic groups
    Kerr, David
    Li, Hanfeng
    [J]. INVENTIONES MATHEMATICAE, 2011, 186 (03) : 501 - 558