Real-time in-situ thermal monitoring system and defect detection using deep learning applied to additive manufacturing

被引:0
|
作者
Rhim, Safouene [1 ]
Albahloul, Hala [1 ,2 ]
Roua, Christophe [1 ]
机构
[1] Cogit Composites, 9117 Rue Vignerons, F-18390 St Germain Du Puy, France
[2] Univ Paris Cite, Learning Planet Inst, 8 Bis Rue Charles V, F-75004 Paris, France
来源
MATERIAL FORMING, ESAFORM 2024 | 2024年 / 41卷
关键词
Additive Manufacturing; Thermography; Artificial Intelligence; Computer Vision; Deep-Learning; Defect Detection; Fused Filament Fabrication;
D O I
10.21741/9781644903131-43
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused deposition modeling, a widely employed additive manufacturing method, has witnessed a significant trend towards printing advanced materials such as PEEK and PAEK in recent years. Research studies have demonstrated the significance of process thermal dynamics in influencing the mechanical and geometric properties of printed components. This paper introduces a real-time thermal monitoring system that comprehensively tracks the thermal history of the printed component. Additionally, a deep learning model is presented, capable of detecting defects during the printing process. The integration of this monitoring system in a closed-loop mode offers the advantage of real-time adjustments, facilitating an immediate enhancement in the quality of the printed parts based on the continuously measured thermal data and the identified defects. Beyond real-time improvements, the data output from the monitoring system holds immense potential for broader applications. It can be seamlessly integrated into simulation software, providing a valuable dataset that can be leveraged to predict the physical properties and the adhesion quality of the printed parts.
引用
收藏
页码:380 / 389
页数:10
相关论文
共 50 条
  • [41] Deep learning-based image segmentation for defect detection in additive manufacturing: an overview
    Deshpande, Sourabh
    Venugopal, Vysakh
    Kumar, Manish
    Anand, Sam
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (5-6) : 2081 - 2105
  • [42] Real-Time Stroke Detection Using Deep Learning and Federated Learning
    Elhanashi, Abdussalam
    Dini, Pierpaolo
    Saponara, Sergio
    Zheng, Qinghe
    Alsharif, Ibrahim
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [43] Vision Based Real Time Monitoring System for Elderly Fall Event Detection Using Deep Learning
    Anitha, G.
    Priya, S. Baghavathi
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (01): : 87 - 103
  • [44] A real-time defective pixel detection system for LCDs using deep learning based object detectors
    Celik, Asli
    Kucukmanisa, Ayhan
    Sumer, Aydin
    Celebi, Aysun Tasyapi
    Urhan, Oguzhan
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (04) : 985 - 994
  • [45] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [46] DEEP LEARNING-BASED DATA FUSION METHOD FOR IN-SITU POROSITY DETECTION IN LASERBASED ADDITIVE MANUFACTURING
    Tian, Qi
    Guo, Shenghan
    Guo, Weihong
    Bian, Linkan
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 2B, 2020,
  • [47] A real-time defective pixel detection system for LCDs using deep learning based object detectors
    Aslı Çelik
    Ayhan Küçükmanisa
    Aydın Sümer
    Aysun Taşyapı Çelebi
    Oğuzhan Urhan
    Journal of Intelligent Manufacturing, 2022, 33 : 985 - 994
  • [48] Real-time Traffic Monitoring System based on Deep Learning and YOLOv8
    Neamah, Saif B.
    Karim, Abdulamir A.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023, 11 (02): : 137 - 150
  • [49] PhishingRTDS: A real-time detection system for phishing attacks using a Deep Learning model
    Asiri, Sultan
    Xiao, Yang
    Alzahrani, Saleh
    Li, Tieshan
    COMPUTERS & SECURITY, 2024, 141
  • [50] Vision-based real-time monitoring of extrusion additive manufacturing processes for automatic manufacturing error detection
    Paschalis Charalampous
    Ioannis Kostavelis
    Charalampos Kopsacheilis
    Dimitrios Tzovaras
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 3859 - 3872