共 50 条
Step-scheme CsPbBr3/BiOBr photocatalyst with oxygen vacancies for efficient CO2 photoreduction
被引:0
|作者:
Sun, Wanjun
[1
,3
]
Liu, Jifei
[1
]
Ran, Feitian
[1
]
Li, Na
[1
]
Li, Zengpeng
[3
]
Li, Yuanyuan
[2
]
Wang, Kai
[1
]
机构:
[1] Lanzhou Jiaotong Univ, Sch New Energy & Power Engn, Lanzhou 730070, Gansu, Peoples R China
[2] Chongqing Univ Educ, Dept Biol & Chem Engn, Chongqing 400067, Peoples R China
[3] Jiuquan Vocat & Tech Coll, Key Lab Solar Power Syst Engn, Jiuquan 735000, Peoples R China
基金:
中国国家自然科学基金;
关键词:
HETEROJUNCTION;
PERSPECTIVES;
REDUCTION;
CATALYSTS;
D O I:
10.1039/d4dt01214c
中图分类号:
O61 [无机化学];
学科分类号:
070301 ;
081704 ;
摘要:
Metal halide perovskites with suitable energy band structures and excellent visible-light responses have emerged as promising photocatalysts for CO2 reduction to valuable chemicals and fuels. However, the efficiency of CO2 photocatalytic reduction often suffers from inefficient separation and sluggish transfer. Herein, a step-scheme (S-scheme) CsPbBr3/BiOBr photocatalyst with oxygen vacancies possessing intimate interfacial contact was fabricated by anchoring CsPbBr3 QDs on BiOBr-Ov nanosheets using a mild anti-precipitation method. The results showed that CsPbBr3/BiOBr-Ov-2 with an internal electric field (IEF) heterojunction exhibited a boosted evolution rate of 27.4 mu mol g(-1) h(-1) (CO: 23.8 mu mol g(-1) h(-1) and CH4: 3.6 mu mol g(-1) h(-1)) with an electron consumption rate (R-electron) of 76.4 mu mol g(-1) h(-1), which was 5.9 and 3.2 times that of single CsPbBr3 and BiOBr-Ov, respectively. Density functional theory (DFT) calculations revealed that BiOBr with oxygen vacancies can effectively enhance the adsorption and activation of CO2 molecules. More importantly, in situ infrared Fourier transform spectroscopy (DRIFTS) spectra show the transformation process of the surface species, while the femtosecond transient absorption spectrum (fs-TA) reveals the charge transfer kinetics of the CsPbBr3/BiOBr-Ov. Overall, this work provides some guidance for the rational design of S-scheme heterojunctions and vacancy-engineered photocatalysts, which are expected to have potential applications in the fields of photocatalysis and solar energy conversion.
引用
收藏
页码:14018 / 14027
页数:10
相关论文