Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production

被引:1
作者
Roman, Ellen Karen Barreto [1 ]
Ramos, Murilo Antonio [2 ,3 ]
Tomazetto, Geizecler [4 ]
Foltran, Bruno Botega [2 ]
Galvao, Matheus Henrique [2 ]
Ciancaglini, Iara [1 ,2 ]
Tramontina, Robson [1 ,2 ]
Rodrigues, Felipe de Almeida [2 ]
da Silva, Larissa Soares [2 ]
Sandano, Ana Luiza Hernandes [2 ]
Fernandes, Diogenes G. da S. [5 ]
Almeida, Dnane Vieira [5 ]
Baldo, Denicezar Angelo [6 ]
de Oliveira Junior, Jose Martins [6 ]
Garcia, Wanius [5 ]
Damasio, Andre [1 ]
Squina, Fabio Marcio [1 ,2 ,3 ]
机构
[1] Univ Estadual Campinas UNICAMP, Inst Biol, Dept Biochem & Tissue Biol, Campinas, SP, Brazil
[2] Univ Sorocaba UNISO, Lab Mol Sci, Sorocaba, SP, Brazil
[3] Univ Sorocaba UNISO, Programa Proc Tecnol & Ambientais, Sorocaba, SP, Brazil
[4] Univ Pittsburgh, Dept Pediat, Dept Pathol, Sch Med, Pittsburgh, PA USA
[5] Univ Fed ABC UFABC, Ctr Ciencias Nat & Humanas CCNH, Santo Andre, SP, Brazil
[6] Univ Sorocaba UNISO, Lab Appl Nucl Phys, Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Metagenomics; Plastic-degrading microorganisms; Plastic-degrading enzymes; Polyhydroxybutyrate; TRIPARTITE TRICARBOXYLATE TRANSPORTER; PERIPLASMIC-BINDING-PROTEIN; POLYETHYLENE TEREPHTHALATE; PHTHALATE DEGRADATION; BIODEGRADATION; POLYPROPYLENE; PSEUDOMONAS; CONSORTIA; DATABASE; FUNGI;
D O I
10.1016/j.scitotenv.2024.174876
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and-B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and-B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.
引用
收藏
页数:14
相关论文
共 104 条
[1]   The UNITE database for molecular identification of fungi - recent updates and future perspectives [J].
Abarenkov, Kessy ;
Nilsson, R. Henrik ;
Larsson, Karl-Henrik ;
Alexander, Ian J. ;
Eberhardt, Ursula ;
Erland, Susanne ;
Hoiland, Klaus ;
Kjoller, Rasmus ;
Larsson, Ellen ;
Pennanen, Taina ;
Sen, Robin ;
Taylor, Andy F. S. ;
Tedersoo, Leho ;
Ursing, Bjorn M. ;
Vralstad, Trude ;
Liimatainen, Kare ;
Peintner, Ursula ;
Koljalg, Urmas .
NEW PHYTOLOGIST, 2010, 186 (02) :281-285
[2]   THE MECHANISM OF BIODEGRADATION OF POLYETHYLENE [J].
ALBERTSSON, AC ;
ANDERSSON, SO ;
KARLSSON, S .
POLYMER DEGRADATION AND STABILITY, 1987, 18 (01) :73-87
[3]  
Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
[4]  
Anjum M.N., 2020, Bionanocomposites, P321, DOI [10.1016/B978-0-12-816751-9.00013-1, DOI 10.1016/B978-0-12-816751-9.00013-1]
[5]  
[Anonymous], 2010, Technical Report on the PCR-DGGE Analysis of Bacterial and Fungal Soil Communities
[6]   The periplasmic binding protein of a tripartite tricarboxylate transporter is involved in signal transduction [J].
Antoine, R ;
Huvent, I ;
Chemlal, K ;
Deray, I ;
Raze, D ;
Locht, C ;
Jacob-Dubuisson, F .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 351 (04) :799-809
[7]   Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface [J].
Arkatkar, Ambika ;
Juwarkar, Asha A. ;
Bhaduri, Sumit ;
Uppara, Parasu Veera ;
Doble, Mukesh .
INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2010, 64 (06) :530-536
[8]   Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp and Rhodococcus sp isolated from mangrove sediment [J].
Auta, H. S. ;
Emenike, C. U. ;
Jayanthi, B. ;
Fauziah, S. H. .
MARINE POLLUTION BULLETIN, 2018, 127 :15-21
[9]   Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J].
Auta, H. S. ;
Emenike, C. U. ;
Fauziah, S. H. .
ENVIRONMENT INTERNATIONAL, 2017, 102 :165-176
[10]   Metagenomics: novel enzymes from non-culturable microbes [J].
Berini, Francesca ;
Casciello, Carmine ;
Marcone, Giorgia Letizia ;
Marinelli, Flavia .
FEMS MICROBIOLOGY LETTERS, 2017, 364 (21)