Frailty Insights Detection System (FIDS)-A Comprehensive and Intuitive Dashboard Using Artificial Intelligence and Web Technologies

被引:2
作者
Ciubotaru, Bogdan-Iulian [1 ]
Sasu, Gabriel-Vasilica [2 ]
Goga, Nicolae [3 ]
Vasilateanu, Andrei [3 ]
Marin, Iuliana [3 ]
Pavaloiu, Ionel-Bujorel [3 ]
Gligore, Claudiu Teodor Ion [4 ]
机构
[1] Minist Natl Def, Mil Equipment & Technol Res Agcy METRA, Clinceni 077025, Romania
[2] Natl Univ Sci & Technol Politehn Bucharest, Fac Automat Control & Comp, Bucharest 060042, Romania
[3] Natl Univ Sci & Technol Politehn Bucharest, Fac Engn Foreign Languages, Bucharest 060042, Romania
[4] Natl Inst Med Expertise & Recovery Working Capac, Pantelimon 077145, Romania
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
关键词
frailty detection system; internet of things; artificial intelligence; PHYSICAL-ACTIVITY;
D O I
10.3390/app14167180
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Frailty, known as a syndrome affecting the elderly, have a direct impact on both social well-being and body's ability to function properly. Specific to geriatric healthcare, the early detection of frailty helps the specialists to mitigate risks of severe health outcomes. This article presents the development process of a system used to determine frailty-specific parameters, focusing on easy-to-use, non-intrusive nature and reliance on objectively measured parameters. The multitude of methodologies and metrics involved in frailty assessment emphasize the multidimensional aspects of this process and the lack of a common and widely accepted methodology as being the gold standard. After the research phase, the frailty-specific parameters considered are physical activity, energy expenditure, unintentional weight loss, and exhaustion, along with additional parameters like daily sedentary time, steps history, heart rate, and body mass index. The system architecture, artificial intelligence models, feature selection, and final prototype results are presented. The last section addresses the challenges, limitations, and future work related to the Frailty Insights Detection System (FIDS).
引用
收藏
页数:23
相关论文
共 43 条
[21]   Real-Time Drowsiness Detection and Health Status System in Agricultural Vehicles Using Artificial Intelligence [J].
Soares, Beatriz ;
Oliveira, Daniel ;
Lau, Nuno ;
Palaio, Helio ;
Contente, Olga ;
Albuquerque, Daniel ;
Marques, Daniel .
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2, 2024, 978 :336-347
[22]   Experimental Analysis of Trustworthy In-Vehicle Intrusion Detection System Using eXplainable Artificial Intelligence (XAI) [J].
Lundberg, Hampus ;
Mowla, Nishat, I ;
Abedin, Sarder Fakhrul ;
Thar, Kyi ;
Mahmood, Aamir ;
Gidlund, Mikael ;
Raza, Shahid .
IEEE ACCESS, 2022, 10 :102831-102841
[23]   A Framework on a Computer Assisted and Systematic Methodology for Detection of Chronic Lower Back Pain Using Artificial Intelligence and Computer Graphics Technologies [J].
Al Kafri, Ala S. ;
Sudirman, Sud ;
Hussain, Abir J. ;
Fergus, Paul ;
Al-Jumeily, Dhiya ;
Al-Jumaily, Mohammed ;
Al-Askar, Haya .
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 :843-854
[24]   Social Media Emotion Detection and Analysis System Using Cutting-Edge Artificial Intelligence Techniques [J].
Rayhan, Tapu ;
Siddika, Ayesha ;
Hasan, Mehedi ;
Elme, Nafisa Sultana .
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 5, ICICT 2024, 2024, 1000 :501-514
[25]   Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS) [J].
Gu, Shangzhi ;
Wang, Lixue ;
Han, Rong ;
Liu, Xiaohong ;
Wang, Yizhe ;
Chen, Ting ;
Zheng, Zhuozhao .
FRONTIERS IN PHYSIOLOGY, 2023, 14
[26]   Development of a Real-Time Vespa velutina Nest Detection and Notification System Using Artificial Intelligence in Drones [J].
Jeong, Yuseok ;
Jeon, Moon-Seok ;
Lee, Jaesu ;
Yu, Seung-Hwa ;
Kim, Su-bae ;
Kim, Dongwon ;
Kim, Kyoung-Chul ;
Lee, Siyoung ;
Lee, Chang-Woo ;
Choi, Inchan .
DRONES, 2023, 7 (10)
[27]   Basic emotion detection accuracy using artificial intelligence approaches in facial emotions recognition system: A systematic review [J].
Hsu, Chia-Feng ;
Mudiyanselage, Sriyani Padmalatha Konara ;
Agustina, Rismia ;
Lin, Mei-Feng .
APPLIED SOFT COMPUTING, 2025, 172
[28]   Model design artificial intelligence and research of adaptive network intrusion detection and defense system using fuzzy logic [J].
Luo, Xiaolin .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) :8227-8235
[29]   Automatic Detection of Visceral Arterial Aneurysms on Computed Tomography Angiography Using Artificial Intelligence Based Segmentation of the Vascular System [J].
Lareyre, Fabien ;
Caradu, Caroline ;
Chaudhuri, Arindam ;
Le, Cong Duy ;
Di Lorenzo, Gilles ;
Adam, Cedric ;
Carrier, Marion ;
Raffort, Juliette .
EJVES VASCULAR FORUM, 2023, 59 :15-19
[30]   A novel artificial intelligence-based hybrid system to improve breast cancer detection using DCE-MRI [J].
Akgul, Smail ;
Kaya, Volkan ;
Karavas, Erdal ;
Aydin, Sonay ;
Baran, Ahmet .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (03)