On the linear convergence of additive Schwarz methods for the p-Laplacian
被引:2
|
作者:
Lee, Young-Ju
论文数: 0引用数: 0
h-index: 0
机构:
Texas State Univ, Dept Math, San Marcos, TX 78666 USATexas State Univ, Dept Math, San Marcos, TX 78666 USA
Lee, Young-Ju
[1
]
Park, Jongho
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi ArabiaTexas State Univ, Dept Math, San Marcos, TX 78666 USA
Park, Jongho
[2
]
机构:
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
[2] King Abdullah Univ Sci & Technol KAUST, Appl Math & Computat Sci Program, Comp Elect & Math Sci & Engn Div, Thuwal 23955, Saudi Arabia
We consider additive Schwarz methods for boundary value problems involving the $p$-Laplacian. While existing theoretical estimates suggest a sublinear convergence rate for these methods, empirical evidence from numerical experiments demonstrates a linear convergence rate. In this paper we narrow the gap between these theoretical and empirical results by presenting a novel convergence analysis. First, we present a new convergence theory for additive Schwarz methods written in terms of a quasi-norm. This quasi-norm exhibits behaviour akin to the Bregman distance of the convex energy functional associated with the problem. Secondly, we provide a quasi-norm version of the Poincar & eacute;-Friedrichs inequality, which plays a crucial role in deriving a quasi-norm stable decomposition for a two-level domain decomposition setting. By utilizing these key elements we establish the asymptotic linear convergence of additive Schwarz methods for the $p$-Laplacian.
机构:
Univ Roma Sapienza, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 10, I-00161 Rome, ItalyUnB Brasilia, Dept Matemat, BR-70297400 Brasilia, DF, Brazil
Leonori, Tommaso
Rossi, Julio D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, Pabellon 1,Ciudad Univ, RA-1428 Buenos Aires, DF, ArgentinaUnB Brasilia, Dept Matemat, BR-70297400 Brasilia, DF, Brazil
机构:
Calif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USACalif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USA
Domokos, Andras
Manfredi, Juan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USACalif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USA
Manfredi, Juan J.
Ricciotti, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USACalif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USA
Ricciotti, Diego
Stroffolini, Bianca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Federico II Napoli, Dept Elect Engn & Informat Technol, I-80125 Naples, ItalyCalif State Univ Sacramento, Dept Math & Stat, 6000 J St, Sacramento, CA 95819 USA
机构:
Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R China
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R ChinaYunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
Liu, Jiaquan
Liu, Xiangqing
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
Soochow Univ, Dept Math, Suzhou 215006, Jiangsu, Peoples R ChinaYunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
Liu, Xiangqing
Guo, Yuxia
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaYunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China