Robust Consensus of Multiple Euler-Lagrange Systems via a Distributed Reduced-Order Observer

被引:2
作者
Long, Mingkang [1 ,2 ]
Su, Housheng [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Hubei, Peoples R China
[2] Minist Educ China, Autonomous Intelligent Unmanned Syst Engn Res Ctr, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2024年 / 11卷 / 03期
基金
中国国家自然科学基金;
关键词
Observers; Control systems; Communication networks; Network topology; Network systems; Consensus protocol; Uncertainty; Distributed reduced-order observer; leader-follower consensus; model-independent; multiple Euler-Lagrange systems (MELSs); robust control; LEADER-FOLLOWING CONSENSUS; MULTIAGENT SYSTEMS; CONSTRAINTS; NETWORKS; TRACKING; AGENTS;
D O I
10.1109/TCNS.2024.3354879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article first proposes a distributed reduced-order observer to estimate the complete state information of leader system. Particularly, the proposed observer only supposes those followers who can acquire partial output elements of leader, and whose communication network suffers communication link faults. Then, by applying the above distributed reduced-order observer, we further design a robust controller for multiple Euler-Lagrange systems (MELSs) to solve the leader-follower consensus problem (LFCP). Distinct with the existing controllers for LFCP of MELSs, this controller is robust for bounded external disturbances, and independent of the structure and features of the Euler-Lagrange system model. Finally, some simulation examples are given to show the effectiveness of the proposed distributed reduced-order observer and robust controller for LFCP of MELSs.
引用
收藏
页码:1667 / 1678
页数:12
相关论文
共 34 条
[1]  
Bernstein DS., 2009, Matrix Mathematics: Theory, Facts, V2nd edn
[2]   Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology [J].
Cai, H. ;
Huang, J. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (3-4) :294-304
[3]   The Leader-Following Consensus for Multiple Uncertain Euler-Lagrange Systems With an Adaptive Distributed Observer [J].
Cai, He ;
Huang, Jie .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) :3152-3157
[4]   Adaptive synchronization of multi-agent systems with resilience to communication link faults [J].
Chen, Ci ;
Xie, Kan ;
Lewis, Frank L. ;
Xie, Shengli ;
Fierro, Rafael .
AUTOMATICA, 2020, 111 (111)
[5]   Adaptive position force control of robot manipulators without velocity measurements: Theory and experimentation [J].
deQueiroz, MS ;
Hu, J ;
Dawson, DM ;
Burg, T ;
Donepudi, SR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (05) :796-809
[6]   Distributed Robust Global Containment Control of Second-Order Multiagent Systems With Input Saturation [J].
Fu, Junjie ;
Wan, Ying ;
Wen, Guanghui ;
Huang, Tingwen .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (04) :1426-1437
[7]   Towards a minimal order distributed observer for linear systems [J].
Han, Weixin ;
Trentelman, Harry L. ;
Wang, Zhenhua ;
Shen, Yi .
SYSTEMS & CONTROL LETTERS, 2018, 114 :59-65
[8]   Model-independent consensus control of Euler-Lagrange agents with interconnecting delays [J].
Hernandez-Guzman, Victor M. ;
Orrante-Sakanassi, J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (12) :4069-4096
[9]  
Jing Wang, 2010, International Journal of Systems, Control and Communications, V2, P275, DOI 10.1504/IJSCC.2010.031167
[10]  
Kamalapurkar R, 2015, Arxiv, DOI arXiv:1306.3432