An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 2: Implementation Considerations and Harms

被引:1
|
作者
Warren, Blair Edward [1 ,2 ]
Bilbily, Alexander [1 ,3 ,4 ]
Gichoya, Judy Wawira [5 ]
Chartier, Lucas B. [6 ,7 ]
Fawzy, Aly [1 ]
Barragan, Camilo [1 ,2 ]
Jaberi, Arash [1 ,2 ]
Mafeld, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Med Imaging, 263 McCaul St,4th Floor, Toronto, ON M5T 1W7, Canada
[2] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
[3] 16 Bit Inc, Toronto, ON, Canada
[4] Univ Toronto, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[5] Emory Univ, Dept Radiol, Atlanta, GA USA
[6] Univ Toronto, Dept Med, Div Emergency Med, Toronto, ON, Canada
[7] Univ Hlth Network, Dept Emergency Med, Toronto, ON, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2024年 / 75卷 / 03期
关键词
artificial intelligence; interventional radiology; safety; harm-reduction;
D O I
10.1177/08465371241236377
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The introduction of artificial intelligence (AI) in interventional radiology (IR) will bring about new challenges and opportunities for patients and clinicians. AI may comprise software as a medical device or AI-integrated hardware and will require a rigorous evaluation that should be guided based on the level of risk of the implementation. A hierarchy of risk of harm and possible harms are described herein. A checklist to guide deployment of an AI in a clinical IR environment is provided. As AI continues to evolve, regulation and evaluation of the AI medical devices will need to continue to evolve to keep pace and ensure patient safety. Visual Abstract This is a visual representation of the abstract. L'av & egrave;nement de l'intelligence artificielle (IA) en radiologie d'intervention (RI) donnera lieu & agrave; de nouvelles probl & eacute;matiques et possibilit & eacute;s touchant & agrave; la fois les patients et les cliniciens. L'IA, qu'elle se pr & eacute;sente sous forme de logiciel & agrave; titre d'instrument m & eacute;dical ou d'appareils avec une fonction d'IA int & eacute;gr & eacute;e, exigera une & eacute;valuation minutieuse qui devra & ecirc;tre dirig & eacute;e selon le niveau de risque associ & eacute; & agrave; sa mise en oe uvre. Le pr & eacute;sent article contient un classement des risques de pr & eacute;judice, ainsi qu'une description des pr & eacute;judices potentiels de ces outils. Une liste de contr & ocirc;le servant & agrave; diriger le d & eacute;ploiement de l'IA dans un cadre clinique de RI est propos & eacute;e. Au fur et & agrave; mesure que l'IA & eacute;volue, la r & eacute;glementation et l'& eacute;valuation des dispositifs m & eacute;dicaux ayant recours & agrave; l'IA devront aussi progresser afin de rester & agrave; jour et de garantir la s & eacute;curit & eacute; des patients.
引用
收藏
页码:568 / 574
页数:7
相关论文
共 50 条
  • [41] Development and Validation of a Questionnaire to Assess the Radiologists' Views on the Implementation of Artificial Intelligence in Radiology (ATRAI-14)
    Vasilev, Yuriy A.
    Vladzymyrskyy, Anton V.
    Alymova, Yulya A.
    Akhmedzyanova, Dina A.
    Blokhin, Ivan A.
    Romanenko, Maria O.
    Seradzhi, Seal R.
    Suchilova, Maria M.
    Shumskaya, Yuliya F.
    Reshetnikov, Roman V.
    HEALTHCARE, 2024, 12 (19)
  • [42] Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning
    Hong, Gil -Sun
    Jang, Miso
    Kyung, Sunggu
    Cho, Kyungjin
    Jeong, Jiheon
    Lee, Grace Yoojin
    Shin, Keewon
    Kim, Ki Duk
    Ryu, Seung Min
    Seo, Joon Beom
    Lee, Sang Min
    Kim, Namkug
    KOREAN JOURNAL OF RADIOLOGY, 2023, 24 (11) : 1061 - 1080
  • [43] How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts
    Kocak, Burak
    Kus, Ece Ates
    Kilickesmez, Ozgur
    EUROPEAN RADIOLOGY, 2021, 31 (04) : 1819 - 1830
  • [44] How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts
    Burak Kocak
    Ece Ates Kus
    Ozgur Kilickesmez
    European Radiology, 2021, 31 : 1819 - 1830
  • [45] An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education
    Merel Huisman
    Erik Ranschaert
    William Parker
    Domenico Mastrodicasa
    Martin Koci
    Daniel Pinto de Santos
    Francesca Coppola
    Sergey Morozov
    Marc Zins
    Cedric Bohyn
    Ural Koç
    Jie Wu
    Satyam Veean
    Dominik Fleischmann
    Tim Leiner
    Martin J. Willemink
    European Radiology, 2021, 31 : 8797 - 8806
  • [46] An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education
    Huisman, Merel
    Ranschaert, Erik
    Parker, William
    Mastrodicasa, Domenico
    Koci, Martin
    de Santos, Daniel Pinto
    Coppola, Francesca
    Morozov, Sergey
    Zins, Marc
    Bohyn, Cedric
    Koc, Ural
    Wu, Jie
    Veean, Satyam
    Fleischmann, Dominik
    Leiner, Tim
    Willemink, Martin J.
    EUROPEAN RADIOLOGY, 2021, 31 (11) : 8797 - 8806
  • [47] A study on the dose distributions near the eye lens and the legs. Part 2-Interventional radiology
    Domienik, J.
    Rusicka, D.
    Szubert, W.
    RADIATION MEASUREMENTS, 2013, 51-52 : 62 - 66
  • [48] Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 2-Comparison of the Performance of Artificial Intelligence and Traditional Pharmacoepidemiological Techniques
    Sessa, Maurizio
    Liang, David
    Khan, Abdul Rauf
    Kulahci, Murat
    Andersen, Morten
    FRONTIERS IN PHARMACOLOGY, 2021, 11
  • [49] Ethical Considerations in Artificial Intelligence Interventions for Mental Health and Well-Being: Ensuring Responsible Implementation and Impact
    Saeidnia, Hamid Reza
    Fotami, Seyed Ghasem Hashemi
    Lund, Brady
    Ghiasi, Nasrin
    SOCIAL SCIENCES-BASEL, 2024, 13 (07):
  • [50] Artificial Intelligence as a Tool for Creating Patient Visit Summary: A Scoping Review and Guide to Implementation in an Erectile Dysfunction Clinic
    Lumbiganon, Supanut
    Chawareb, Elia Abou
    Hammad, Muhammed A. Moukhtar
    Azad, Babak
    Shah, Dillan
    Yafi, Faysal A.
    CURRENT UROLOGY REPORTS, 2025, 26 (01)