Study of a Numerical Integral Interpolation Method for Electromagnetic Transient Simulations

被引:0
作者
Sun, Kaiyuan [1 ]
Chen, Kun [1 ]
Cen, Haifeng [1 ]
Tan, Fucheng [2 ]
Ye, Xiaohui [2 ]
机构
[1] Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 510510, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Peoples R China
关键词
algorithm accuracy; Butcher tableau; electromagnetic transient simulations; interpolation method; Runge-Kutta integration; ACCURACY; IMPLEMENTATION; REPRESENTATION; EFFICIENT;
D O I
10.3390/en17153837
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the fixed time-step electromagnetic transient (EMT)-type program, an interpolation process is applied to deal with switching events. The interpolation method frequently reduces the algorithm's accuracy when dealing with power electronics. In this study, we use the Butcher tableau to analyze the defects of linear interpolation. Then, based on the theories of Runge-Kutta integration, we propose two three-stage diagonally implicit Runge-Kutta (3S-DIRK) algorithms combined with the trapezoidal rule (TR) and backward Euler (BE), respectively, with TR-3S-DIRK and BE2-3S-DIRK for the interpolation and synchronization processes. The proposed numerical integral interpolation scheme has second-order accuracy and does not produce spurious oscillations due to the size change in the time step. The proposed method is compared with the critical damping adjustment method (CDA) and the trapezoidal method, showing that it does not produce spurious numerical oscillations or first-order errors.
引用
收藏
页数:17
相关论文
共 35 条
[1]   TESTING OF TRAPEZOIDAL INTEGRATION WITH DAMPING FOR THE SOLUTION OF POWER TRANSIENT PROBLEMS [J].
ALVARADO, FL ;
LASSETER, RH ;
SANCHEZ, JJ .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1983, 102 (12) :3783-3790
[2]   Electromagnetic Transients Program: History and Future [J].
Ametani, Akihiro .
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2021, 16 (09) :1150-1158
[3]  
Butcher J.C., 2008, Numerical Methods for Ordinary Differential Equations, V2nd ed., P230
[4]  
Butcher J.C., 1963, J AUSTR MATH SOC, V3, P185, DOI DOI 10.1017/S1446788700027932
[5]   Analysis of Second Order Time Filtered Backward Euler Method for MHD Equations [J].
Cibik, Aytekin ;
Eroglu, Fatma G. ;
Kaya, Songul .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)
[6]   Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems [J].
da Silva, Clauson Carvalho ;
Lessig, Christian .
BIT NUMERICAL MATHEMATICS, 2022, 62 (04) :1823-1840
[7]  
DOMMEL HW, 1969, IEEE T POWER AP SYST, VPA88, P388, DOI 10.1109/TPAS.1969.292459
[8]   SIMULTANEOUS NUMERICAL SOLUTION OF DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
GEAR, CW .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (01) :89-&
[9]  
HO CW, 1975, IEEE T CIRCUITS SYST, VCA22, P504, DOI 10.1109/TCS.1975.1084079
[10]   Numerical solution of the Duffing equation with random coefficients [J].
Kaminski, Marcin ;
Corigliano, Alberto .
MECCANICA, 2015, 50 (07) :1841-1853