Applications of Natural Language Processing for Automated Clinical Data Analysis in Orthopaedics

被引:4
作者
AlShehri, Yasir [1 ]
Sidhu, Arashdeep [2 ]
Lakshmanan, Laks V. S. [3 ]
Lefaivre, Kelly A. [2 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Med, Dept Orthoped, Dammam, Saudi Arabia
[2] Univ British Columbia, Fac Med, Dept Orthopaed, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC, Canada
关键词
ONLINE REVIEWS; DATA ELEMENTS; DATABASES; CARE;
D O I
10.5435/JAAOS-D-23-00839
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Natural language processing is an exciting and emerging field in health care that can transform the field of orthopaedics. It can aid in the process of automated clinical data analysis, changing the way we extract data for various purposes including research and registry formation, diagnosis, and medical billing. This scoping review will look at the various applications of NLP in orthopaedics. Specific examples of NLP applications include identification of essential data elements from surgical and imaging reports, patient feedback analysis, and use of AI conversational agents for patient engagement. We will demonstrate how NLP has proven itself to be a powerful and valuable tool. Despite these potential advantages, there are drawbacks we must consider. Concerns with data quality, bias, privacy, and accessibility may stand as barriers in the way of widespread implementation of NLP technology. As natural language processing technology continues to develop, it has the potential to revolutionize orthopaedic research and clinical practices and enhance patient outcomes.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 39 条
[1]  
Adamopoulou E., 2020, ARTIF INTELL, P373, DOI [DOI 10.1007/978-3-030-49186-4_31, 10.1007/978-3-030-49186-431]
[2]   Artificial intelligence, machine learning, and deep learning in orthopedic surgery [J].
Atik, O. Sahap .
JOINT DISEASES AND RELATED SURGERY, 2022, 33 (02) :484-485
[3]   Using natural language processing and machine learning to classify health literacy from secure messages: The ECLIPPSE study [J].
Balyan, Renu ;
Crossley, Scott A. ;
Brown, William, III ;
Karter, Andrew J. ;
McNamara, Danielle S. ;
Liu, Jennifer Y. ;
Lyles, Courtney R. ;
Schillinger, Dean .
PLOS ONE, 2019, 14 (02)
[4]   Nationwide Databases in Orthopaedic Surgery Research [J].
Bohl, Daniel D. ;
Singh, Kern ;
Grauer, Jonathan N. .
JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2016, 24 (10) :673-682
[5]   Natural Language Processing of Patient-Experience Comments After Primary Total Knee Arthroplasty [J].
Bovonratwet, Patawut ;
Shen, Tony S. ;
Islam, Wasif ;
Ast, Michael P. ;
Haas, Steven B. ;
Su, Edwin P. .
JOURNAL OF ARTHROPLASTY, 2021, 36 (03) :927-934
[6]  
Chen S., 2021, Computer-assisted medical billing information extraction: Comparing rule-based and end-to-end transfer learning approaches, P132, DOI [10.1109/CHASE52844.2021.00031, DOI 10.1109/CHASE52844.2021.00031]
[7]   Natural Language Processing as an Emerging Tool to Detect Late-Life Depression [J].
DeSouza, Danielle D. ;
Robin, Jessica ;
Gumus, Melisa ;
Yeung, Anthony .
FRONTIERS IN PSYCHIATRY, 2021, 12
[8]  
Dwyer Tim, 2023, Arthrosc Sports Med Rehabil, V5, pe495, DOI 10.1016/j.asmr.2023.01.020
[9]   Using artificial intelligence to reduce orthopedic surgical site infection surveillance workload: Algorithm design, validation, and implementation in 4 Spanish hospitals [J].
Flores-Balado, Alvaro ;
Mendez, Carlos Castresana ;
Gonzalez, Antonio Herrero ;
Gutierrez, Raul Meson ;
Camara, Gonzalo de las Casas ;
Cordero, Beatriz Vila ;
Arcos, Javier ;
Pfang, Bernadette ;
Martin-Rios, Maria Dolores .
AMERICAN JOURNAL OF INFECTION CONTROL, 2023, 51 (11) :1225-1229
[10]   Automated Detection of Periprosthetic Joint Infections and Data Elements Using Natural Language Processing [J].
Fu, Sunyang ;
Wyles, Cody C. ;
Osmon, Douglas R. ;
Carvour, Martha L. ;
Sagheb, Elham ;
Ramazanian, Taghi ;
Kremers, Walter K. ;
Lewallen, David G. ;
Berry, Daniel J. ;
Sohn, Sunghwan ;
Kremers, Hilal Maradit .
JOURNAL OF ARTHROPLASTY, 2021, 36 (02) :688-692