Construction and assessment of a fire risk index system for typical grasslands in Xinjiang, China

被引:0
作者
Zhang, Liangliang [1 ,2 ]
Zhang, Renping [1 ,2 ]
Dai, Junfeng [3 ]
Zhang, Jianli [4 ]
Guo, Jing [5 ]
Zhou, Jiahui [1 ,2 ]
Miao, Yuhao [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Ecol & Environm, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Key Lab Oasis Ecol, Educ Minist, Urumqi 830046, Peoples R China
[3] Xinjiang Uygur Autonomous Reg Forestry & Grassland, Urumqi 830000, Peoples R China
[4] Xinjiang Uygur Autonomous Reg Grassland Gen Stn, Urumqi 830000, Peoples R China
[5] Xinjiang Acad Forestry, Urumqi 830000, Peoples R China
来源
FIRE ECOLOGY | 2024年 / 20卷 / 01期
基金
美国国家航空航天局;
关键词
Grassland fire; Index system; Hazard; Vulnerability; Risk assessment; LIVE FUEL MOISTURE; FOREST; VULNERABILITY; WATER;
D O I
10.1186/s42408-024-00319-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
BackgroundFire hazards have a substantial impact on grassland ecosystems, and they are becoming more frequent and widespread because of global changes and human activities. However, there is still a lack of a widely accepted or practical method to evaluate grassland fire risk. In our study of typical grasslands in northern Xinjiang, we selected 18 evaluation indicators for grassland fires from three aspects of hazard, exposure, and vulnerability. Employing the analytic hierarchy process, weighted comprehensive evaluation method, and standard deviation classification, we determined the fire risk level thresholds, aiming to develop efficient and precise methods for assessing grassland fire risks, and ultimately created a grid-based map of grassland fire risk levels.ResultsThe risk level of grassland fires is determined by the combined spatial heterogeneity of fire-causing factors' hazard and fire hazard-bearing bodies' vulnerability and exposure. The hazard of grassland fire and fire hazard-bearing bodies' vulnerability and exposure are dominated by medium level and medium-low level. Most areas of grassland fire risk levels are medium-low, medium, or medium-high risk, with few areas being high risk or low risk. The grassland fire risk exhibits a spatial distribution characterized by higher risks in the western and lower in the eastern; high and medium-high risk areas are primarily distributed in the western and some northeastern regions of the study area. The simulate result effectively represents the spatial distribution of grassland fire in the research area.ConclusionWe established a grassland fire risk index system and model, creating a spatial distribution map of grassland fire risk levels based on grid. Few grassland areas have fire risks and show a patchy distribution. The results generally reflect the spatial distribution pattern of grassland fire risks in the study area. This research provides technical support for scientifically formulating local grassland fire disaster prevention and relief strategies. AntecedentesLos riesgos de incendios tienen un impacto substancial en ecosistemas de pastizales, y est & aacute;n siendo m & aacute;s frecuentes y extensos debido al cambio Clim & aacute;tico Global y a las actividades humanas. Sin embargo, todav & iacute;a faltan m & eacute;todos pr & aacute;cticos que sean ampliamente aceptados para evaluar el riesgo de incendios en pastizales. En nuestro estudio de pastizales t & iacute;picos en el norte de Xinjiang, China, seleccionamos 18 indicadores de evaluaci & oacute;n de incendios de pastizales desde tres aspectos: de riesgo, de exposici & oacute;n, y de vulnerabilidad. Empleando el proceso de An & aacute;lisis Jer & aacute;rquico, el M & eacute;todo de Evaluaci & oacute;n Comprensiva Ponderada (Weighted Comprehensive Evaluation Method), y la clasificaci & oacute;n de la desviaci & oacute;n est & aacute;ndar, determinamos los l & iacute;mites del nivel de riesgo, tendiente a desarrollar m & eacute;todos eficientes y precisos para determinar el riesgo de incendios en pastizales, y finalmente, crear un mapa basado en grillas donde se muestren estos niveles de riesgo.ResultadosEl nivel de riesgo de incendios en pastizales est & aacute; determinado por la combinaci & oacute;n de la heterogeneidad espacial de los factores causantes del riesgo y la vulnerabilidad y exposici & oacute;n de los portadores-conductores de esos riesgos. El riesgo de incendios de pastizales y la vulnerabilidad y exposici & oacute;n de sus conductores son dominados por niveles medios y medios-bajos de esos riesgos. En la mayor & iacute;a de las & aacute;reas, los niveles de riesgo de incendios son medio-bajos, medios y medio-altos, con muy pocas & aacute;reas de riesgo alto, o bajo. El riesgo de incendios de pastizales exhibe una distribuci & oacute;n espacial caracterizada por alto riesgo en el Oeste y bajo riesgo en el Este, y & aacute;reas de riesgo alto y medio-alto est & aacute;n primariamente distribuidas en el Oeste y en algunas regiones del Noreste del & aacute;rea de estudio. El estudio de simulaci & oacute;n representa efectivamente la distribuci & oacute;n espacial de fuegos de pastizales en el & aacute;rea estudiada.ConclusionesEstablecimos un Sistema y Modelo de & Iacute;ndice de Riesgo para pastizales, creando un mapa de distribuci & oacute;n espacial de niveles de riesgo basado en una grilla. Pocas & aacute;reas presentan riesgo de incendios y muestran una distribuci & oacute;n en parches. Los resultados reflejan de manera general el patr & oacute;n de distribuci & oacute;n de los riesgos de incendio de pastizales en el & aacute;rea de estudio. Esta investigaci & oacute;n provee de soporte t & eacute;cnico para formular estrategias de prevenci & oacute;n y alivio en el caso de desastres por incendios.
引用
收藏
页数:14
相关论文
共 53 条
  • [1] Managed Wildfire Effects on Forest Resilience and Water in the Sierra Nevada
    Boisrame, Gabrielle
    Thompson, Sally
    Collins, Brandon
    Stephens, Scott
    [J]. ECOSYSTEMS, 2017, 20 (04) : 717 - 732
  • [2] Climate warming increases extreme daily wildfire growth risk in California
    Brown, Patrick T.
    Hanley, Holt
    Mahesh, Ankur
    Reed, Colorado
    Strenfel, Scott J.
    Davis, Steven J.
    Kochanski, Adam K.
    Clements, Craig B.
    [J]. NATURE, 2023, 621 (7980) : 760 - +
  • [3] A Better Norm-Referenced Grading Using the Standard Deviation Criterion
    Chan, Wing-Shing
    [J]. TEACHING AND LEARNING IN MEDICINE, 2014, 26 (04) : 364 - 365
  • [4] Predicting Grassland Fire-Occurrence Probability in Inner Mongolia Autonomous Region, China
    Chang, Chang
    Chang, Yu
    Xiong, Zaiping
    Ping, Xiaoying
    Zhang, Heng
    Guo, Meng
    Hu, Yuanman
    [J]. REMOTE SENSING, 2023, 15 (12)
  • [5] Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating
    Chuvieco, E
    Cocero, D
    Riaño, D
    Martin, P
    Martínez-Vega, J
    de la Riva, J
    Pérez, F
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) : 322 - 331
  • [6] Relations Between Human Factors and Global Fire Activity
    Chuvieco, Emilio
    Justice, Chris
    [J]. ADVANCES IN EARTH OBSERVATION OF GLOBAL CHANGE, 2010, : 187 - 199
  • [7] Calibration of the Fire Weather Index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery
    DaCamara, Carlos C.
    Calado, Teresa J.
    Ermida, Sofia L.
    Trigo, Isabel F.
    Amraoui, Malik
    Turkman, Kamil F.
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2014, 23 (07) : 945 - 958
  • [8] Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index
    Dennison, PE
    Roberts, DA
    Thorgusen, SR
    Regelbrugge, JC
    Weise, D
    Lee, C
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 88 (04) : 442 - 452
  • [9] INTRODUCTION: STRENGTHENING THE FOUNDATION OF WILDLAND FIRE EFFECTS PREDICTION FOR RESEARCH AND MANAGEMENT
    Dickinson, Matthew B.
    Ryan, Kevin C.
    [J]. FIRE ECOLOGY, 2010, 6 (01): : 1 - 12
  • [10] Regional-scale fire severity mapping of Eucalyptus forests with the Landsat archive
    Dixon, Dan J.
    Callow, J. Nikolaus
    Duncan, John M. A.
    Setterfield, Samantha A.
    Pauli, Natasha
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 270