Machine Learning for the Prediction of Surgical Morbidity in Placenta Accreta Spectrum

被引:0
作者
Futterman, Itamar D. [1 ,2 ]
Sher, Olivia [1 ]
Saroff, Chaskin [3 ]
Cohen, Alexa [4 ]
Doulaveris, Georgios [4 ]
Dar, Pe'er [4 ]
Griffin, Myah M. [5 ]
Limaye, Meghana [5 ]
Owens, Thomas [6 ]
Brustman, Lois [6 ]
Rosenberg, Henri [7 ]
Jessel, Rebecca [7 ]
Chudnoff, Scott [1 ]
Haberman, Shoshana [1 ]
机构
[1] Maimonides Hosp, Dept Obstet & Gynecol, Div Maternal Fetal Med, Brooklyn, NY 11219 USA
[2] Maimonides Hosp, Dept Obstet & Gynecol, Div Complex Obstetr Surg, Brooklyn, NY USA
[3] BioticAI Inc, San Francisco, CA USA
[4] Albert Einstein Coll Med, Montefiore Med Ctr, Div Fetal Med & Ultrasound Obstet Gynecol & Women, Bronx, NY USA
[5] NYU, Langone Med Ctr, Dept Obstet & Gynecol, Div Maternal Fetal Med, New York, NY USA
[6] Icahn Sch Med Mt Sinai, Mt Sinai West, Div Maternal Fetal Med, New York, NY USA
[7] Icahn Sch Med Mt Sinai, Dept Obstet Gynecol & Reprod Sci, Div Maternal Fetal Med, New York, NY USA
关键词
placenta accreta spectrum; surgical morbidity; machine learning; CESAREAN DELIVERY; HYSTERECTOMY; MANAGEMENT; PREVENTION; DIAGNOSIS;
D O I
10.1055/a-2405-3459
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Objective We sought to create a machine learning (ML) model to identify variables that would aid in the prediction of surgical morbidity in cases of placenta accreta spectrum (PAS). Study Design A multicenter analysis including all cases of PAS identified by pathology specimen confirmation, across five tertiary care perinatal centers in New York City from 2013 to 2022. We developed models to predict operative morbidity using 213 variables including demographics, obstetrical information, and limited prenatal imaging findings detailing placental location. Our primary outcome was prediction of a surgical morbidity composite defined as including any of the following: blood loss (>1,500 mL), transfusion, intensive care unit admission, vasopressor use, mechanical ventilation/intubation, and organ injury. A nested, stratified, cross-validation approach was used to tune model hyperparameters and estimate generalizability. Gradient boosted tree classifier models incorporated preprocessing steps of standard scaling for numerical variables and one-hot encoding for categorical variables. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), positive and negative predictive values (PPV, NPV), and F1 score. Variable importance ranking was also determined. Results Among 401 PAS cases, 326 (81%) underwent hysterectomy. Of the 401 cases of PAS, 309 (77%) had at least one event defined as surgical morbidity. Our predictive model had an AUC of 0.79 (95% confidence interval: 0.69, 0.89), PPV 0.79, NPV 0.76, and F1 score of 0.88. The variables most predictive of surgical morbidity were completion of a hysterectomy, prepregnancy body mass index (BMI), absence of a second trimester ultrasound, socioeconomic status zip code, BMI at delivery, number of prenatal visits, and delivery time of day. Conclusion By identifying social and obstetrical characteristics that increase patients' risk, ML models are useful in predicting PAS-related surgical morbidity. Utilizing ML could serve as a foundation for risk and complexity stratification in cases of PAS to optimize surgical planning.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 43 条
  • [1] Planned Caesarean Hysterectomy Versus "Conserving" Caesarean Section in Patients With Placenta Accreta
    Amsalem, Hagai
    Kingdom, John C. P.
    Farine, Dan
    Allen, Lisa
    Yinon, Yoav
    D'Souza, Donna L.
    Kachura, John
    Pantazi, Sophia
    Windrim, Rory
    [J]. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA, 2011, 33 (10) : 1005 - 1010
  • [2] Surgical management of placenta accreta: a cohort series and suggested approach
    Angstmann, Tobias
    Gard, Gregory
    Harrington, Tim
    Ward, Elizabeth
    Thomson, Amanda
    Giles, Warwick
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2010, 202 (01) : 38.e1 - 38.e9
  • [3] Uterine conservative-resective surgery for selected placenta accreta spectrum cases: Surgical-vascular control methods
    Aryananda, Rozi Aditya
    Aditiawarman, Aditiawarman
    Gumilar, Khanisyah Erza
    Wardhana, Manggala Pasca
    Akbar, M. Ilham Aldika
    Cininta, Nareswari
    Ernawati, Ernawati
    Wicaksono, Budi
    Joewono, Hermanto Tri
    Dachlan, Erry Gumilar
    Bachtiar, Citra Aulia
    Kurniawati, Devita
    Virdayanti, Dian Puspita
    Ariani, Grace
    Dekker, Gustaaf Albert
    Sulistyono, Agus
    [J]. ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2022, 101 (06) : 639 - 648
  • [4] Obesity and the challenges of caesarean delivery: Prevention and management of wound complications
    Ayres-de-Campos, Diogo
    [J]. BEST PRACTICE & RESEARCH CLINICAL OBSTETRICS & GYNAECOLOGY, 2015, 29 (03) : 406 - 414
  • [5] Obstetric Care Consensus No. 7: Placenta Accreta Spectrum
    Cahill, Alison G.
    Beigi, Richard
    Heine, Phillips
    Silver, Robert M.
    Wax, Joseph R.
    [J]. OBSTETRICS AND GYNECOLOGY, 2018, 132 (06) : E259 - E275
  • [6] Maternal death in the 21st century: Clark et al
    Clark, S. L.
    Belfort, M. A.
    Dildy, G. A.
    Herbst, M. A.
    Meyers, J. A.
    Hankins, G. D., V
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2008, 199 (01) : 91 - 92
  • [7] Investigation of health inequities in maternal and neonatal outcomes of patients with placenta accreta spectrum: a multicenter study
    Cohen, Alexa
    Lambert, Calvin
    Yanik, Megan
    Nathan, Lisa
    Rosenberg, Henri M.
    Tavella, Nicola
    Bianco, Angela
    Futterman, Itamar
    Haberman, Shoshana
    Griffin, Myah M.
    Limaye, Meghana
    Owens, Thomas
    Brustman, Lois
    Wu, Haotian
    Dar, Pe'er
    Jessel, Rebecca H.
    Doulaveris, Georgios
    [J]. AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2024, 6 (07)
  • [8] Evidence-based guidelines for the management of abnormally invasive placenta: recommendations from the International Society for Abnormally Invasive Placenta
    Collins, Sally L.
    Alemdar, Bahrin
    van Beekhuizen, Heleen J.
    Bertholdt, Charline
    Braun, Thorsten
    Calda, Pavel
    Delorme, Pierre
    Duvekot, Johannes J.
    Gronbeck, Lene
    Kayem, Gilles
    Langhoff-Roos, Jens
    Marcellin, Louis
    Martinelli, Pasquale
    Morel, Olivier
    Mhallem, Mina
    Morlando, Maddalena
    Noergaard, Lone N.
    Nonnenmacher, Andreas
    Pateisky, Petra
    Petit, Philippe
    Rijken, Marcus J.
    Ropacka-Lesiak, Mariola
    Schlembach, Dietmar
    Sentilhes, Loic
    Stefanovic, Vedran
    Strindfors, Gita
    Tutschek, Boris
    Vangen, Siri
    Weichert, Alexander
    Weizsaecker, Katharina
    Chantraine, Frederic
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2019, 220 (06) : 511 - 526
  • [9] Emergency peripartum hysterectomy in a tertiary teaching hospital: a 14-year review
    D'Arpe, Stella
    Franceschetti, Silvia
    Corosu, Roberto
    Palaia, Innocenza
    Di Donato, Violante
    Perniola, Giorgia
    Muzii, Ludovico
    Panici, Pierluigi Benedetti
    [J]. ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2015, 291 (04) : 841 - 847
  • [10] Predictors of surgical site skin infection and clinical outcome at caesarean section in the very severely obese: A retrospective cohort study
    Dias, Michael
    Dick, Allyn
    Reynolds, Rebecca M.
    Lahti-Pulkkinen, Marius
    Denison, Fiona C.
    [J]. PLOS ONE, 2019, 14 (06):