Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L1 data

被引:0
作者
Aoun, Mirella [1 ]
Guibe, Olivier [1 ]
机构
[1] Univ Rouen Normandie, CNRS, Lab Math Raphael Salem, UMR 6085, F-76000 Rouen, France
关键词
Convection-diffusion equation; Finite volume schemes; Renormalized solution; Neumann boundary conditions; Integrable data; Numerical analysis; H-CONVERGENCE; EQUATIONS;
D O I
10.1007/s10092-024-00602-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L-1 data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result.
引用
收藏
页数:41
相关论文
共 27 条
[1]   Well-posed elliptic Neumann problems involving irregular data and domains [J].
Alvino, Angelo ;
Cianchi, Andrea ;
Maz'ya, Vladimir G. ;
Mercaldo, Anna .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04) :1017-1054
[2]  
[Anonymous], 1999, FINITE VOLUMES COMPL
[3]  
Aoun M., Approximation of elliptic, parabolic equations with data and Neumann boundary condition
[4]   On discrete functional inequalities for some finite volume schemes [J].
Bessemoulin-Chatard, Marianne ;
Chainais-Hillairet, Claire ;
Filbet, Francis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1125-1149
[5]   Neumann problems for nonlinear elliptic equations with L1 data [J].
Betta, M. F. ;
Guibe, O. ;
Mercaldo, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :898-924
[6]   UNIQUENESS FOR NEUMANN PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS [J].
Betta, Maria Francesca ;
Guibe, Olivier ;
Mercaldo, Anna .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) :1023-1048
[7]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[8]   Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 [J].
Casado-Diaz, J. ;
Rebollo, T. Chacon ;
Girault, V. ;
Marmol, M. Gomez ;
Murat, F. .
NUMERISCHE MATHEMATIK, 2007, 105 (03) :337-374
[9]   Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis [J].
Chainais-Hillairet, C ;
Liu, JG ;
Peng, YJ .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :319-338
[10]   Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions [J].
Chainais-Hillairet, Claire ;
Droniou, Jerome .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) :61-85