Privacy-Preserving Collaborative Learning With Linear Communication Complexity

被引:1
作者
Lu, Xingyu [1 ]
Sami, Hasin Us [1 ]
Guler, Basak [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
关键词
Training; Computational modeling; Cryptography; Privacy; Information theory; Resilience; Protocols; Coded computing; distributed training; collaborative machine learning; information-theoretic privacy; COMPUTATION;
D O I
10.1109/TIT.2023.3345270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative machine learning enables privacy-preserving training of machine learning models without collecting sensitive client data. Despite recent breakthroughs, communication bottleneck is still a major challenge against its scalability to larger networks. To address this challenge, in this work we propose PICO, the first collaborative learning framework with linear communication complexity, significantly improving over the quadratic state-of-the-art, under formal information-theoretic privacy guarantees. Theoretical analysis demonstrates that PICO slashes the communication cost while achieving equal computational complexity, adversary resilience, robustness to client dropouts, and model accuracy to the state-of-the-art. Extensive experiments demonstrate up to 91x reduction in the communication overhead, and up to 8x speed-up in the wall-clock training time compared to the state-of-the-art. As such, PICO addresses a key technical challenge in multi-party collaborative learning, paving the way for future large-scale privacy-preserving learning frameworks.
引用
收藏
页码:5857 / 5887
页数:31
相关论文
共 50 条
  • [21] A Lightweight and Accuracy-Lossless Privacy-Preserving Method in Federated Learning
    Liu, Zhen
    Yang, Changsong
    Ding, Yong
    Liang, Hai
    Wang, Yujue
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 3118 - 3129
  • [22] A Privacy-Preserving Framework for Collaborative Machine Learning with Kernel methods
    Hannemann, Anika
    Uenal, Ali Burak
    Swaminathan, Arjhun
    Buchmann, Erik
    Akguen, Mete
    2023 5TH IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS, TPS-ISA, 2023, : 82 - 90
  • [23] Privacy-Preserving and Low-Latency Federated Learning in Edge Computing
    He, Chunrong
    Liu, Guiyan
    Guo, Songtao
    Yang, Yuanyuan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20149 - 20159
  • [24] SVCA: Secure and Verifiable Chained Aggregation for Privacy-Preserving Federated Learning
    Xia, Yuanjun
    Liu, Yining
    Dong, Shi
    Li, Meng
    Guo, Cheng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 18351 - 18365
  • [25] PDLM: Privacy-Preserving Deep Learning Model on Cloud with Multiple Keys
    Ma, Xindi
    Ma, Jianfeng
    Li, Hui
    Jiang, Qi
    Gao, Sheng
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2021, 14 (04) : 1251 - 1263
  • [26] Privacy-preserving distributed collaborative filtering
    Boutet, Antoine
    Frey, Davide
    Guerraoui, Rachid
    Jegou, Arnaud
    Kermarrec, Anne-Marie
    COMPUTING, 2016, 98 (08) : 827 - 846
  • [27] Privacy-preserving collaborative social networks
    Zhan, Justin
    Blosser, Gary
    Yang, Chris
    Singh, Lisa
    INTELLIGENCE AND SECURITY INFORMATICS, PROCEEDINGS, 2008, 5075 : 114 - +
  • [28] Privacy-preserving collaborative data mining
    Zhan, J
    Chang, LW
    Matwin, S
    FOUNDATIONS AND NOVEL APPROACHES IN DATA MINING, 2006, 9 : 213 - +
  • [29] Privacy-Preserving Federated Deep Learning With Irregular Users
    Xu, Guowen
    Li, Hongwei
    Zhang, Yun
    Xu, Shengmin
    Ning, Jianting
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (02) : 1364 - 1381
  • [30] Privacy-preserving distributed collaborative filtering
    Antoine Boutet
    Davide Frey
    Rachid Guerraoui
    Arnaud Jégou
    Anne-Marie Kermarrec
    Computing, 2016, 98 : 827 - 846