Privacy-Preserving Collaborative Learning With Linear Communication Complexity

被引:1
|
作者
Lu, Xingyu [1 ]
Sami, Hasin Us [1 ]
Guler, Basak [1 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
关键词
Training; Computational modeling; Cryptography; Privacy; Information theory; Resilience; Protocols; Coded computing; distributed training; collaborative machine learning; information-theoretic privacy; COMPUTATION;
D O I
10.1109/TIT.2023.3345270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative machine learning enables privacy-preserving training of machine learning models without collecting sensitive client data. Despite recent breakthroughs, communication bottleneck is still a major challenge against its scalability to larger networks. To address this challenge, in this work we propose PICO, the first collaborative learning framework with linear communication complexity, significantly improving over the quadratic state-of-the-art, under formal information-theoretic privacy guarantees. Theoretical analysis demonstrates that PICO slashes the communication cost while achieving equal computational complexity, adversary resilience, robustness to client dropouts, and model accuracy to the state-of-the-art. Extensive experiments demonstrate up to 91x reduction in the communication overhead, and up to 8x speed-up in the wall-clock training time compared to the state-of-the-art. As such, PICO addresses a key technical challenge in multi-party collaborative learning, paving the way for future large-scale privacy-preserving learning frameworks.
引用
收藏
页码:5857 / 5887
页数:31
相关论文
共 50 条
  • [1] Privacy-Preserving Collaborative Learning Through Feature Extraction
    Sarmadi, Alireza
    Fu, Hao
    Krishnamurthy, Prashanth
    Garg, Siddharth
    Khorrami, Farshad
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (01) : 486 - 498
  • [2] Privacy-Preserving Collaborative Learning for Genome Analysis via Secure XGBoost
    Aldeen, Mohammed Shujaa
    Zhao, Chuan
    Chen, Zhenxiang
    Fang, Liming
    Liu, Zhe
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5755 - 5765
  • [3] Privacy-Preserving Machine Learning [Cryptography]
    Kerschbaum, Florian
    Lukas, Nils
    IEEE SECURITY & PRIVACY, 2023, 21 (06) : 90 - 94
  • [4] Communication-Efficient Personalized Federated Learning With Privacy-Preserving
    Wang, Qian
    Chen, Siguang
    Wu, Meng
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2374 - 2388
  • [5] Privacy-Preserving Group Discovery with Linear Complexity
    Manulis, Mark
    Pinkas, Benny
    Poettering, Bertram
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, 2010, 6123 : 420 - +
  • [6] OpenVFL: A Vertical Federated Learning Framework With Stronger Privacy-Preserving
    Yang, Yunbo
    Chen, Xiang
    Pan, Yuhao
    Shen, Jiachen
    Cao, Zhenfu
    Dong, Xiaolei
    Li, Xiaoguo
    Sun, Jianfei
    Yang, Guomin
    Deng, Robert
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9670 - 9681
  • [7] Cryptographic Primitives in Privacy-Preserving Machine Learning: A Survey
    Qin, Hong
    He, Debiao
    Feng, Qi
    Khan, Muhammad Khurram
    Luo, Min
    Choo, Kim-Kwang Raymond
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (05) : 1919 - 1934
  • [8] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523
  • [9] Hercules: Boosting the Performance of Privacy-Preserving Federated Learning
    Xu, Guowen
    Han, Xingshuo
    Xu, Shengmin
    Zhang, Tianwei
    Li, Hongwei
    Huang, Xinyi
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (05) : 4418 - 4433
  • [10] Privacy-Preserving Collaborative Deep Learning With Unreliable Participants
    Zhao, Lingchen
    Wang, Qian
    Zou, Qin
    Zhang, Yan
    Chen, Yanjiao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 1486 - 1500