Shape-intensity-guided U-net for medical image segmentation

被引:1
|
作者
Dong, Wenhui
Du, Bo
Xu, Yongchao [1 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Sch Comp Sci, Wuhan, Peoples R China
关键词
Medical image segmentation; Texture bias; Shape-intensity prior; Model generalization; NETWORK;
D O I
10.1016/j.neucom.2024.128534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image segmentation has achieved impressive results thanks to U-Net or its alternatives. Yet, most existing methods perform segmentation by classifying individual pixels, tending to ignore the shape-intensity prior information. This may yield implausible segmentation results. Besides, the segmentation performance often drops greatly on unseen datasets. One possible reason is that the model is biased towards texture information, which varies more than shape information across different datasets. In this paper, we introduce a novel Shape-Intensity-Guided U-Net (SIG-UNet) for improving the generalization ability of variants of UNet in segmenting medical images. Specifically, we adopt the U-Net architecture to reconstruct class-wisely averaged images that only contain the shape-intensity information. We then add an extra similar decoder branch with the reconstruction decoder for segmentation, and apply skip fusion between them. Since the class- wisely averaged image has no any texture information, the reconstruction decoder focuses more on shape and intensity features than the encoder on the original image. Therefore, the final segmentation decoder has less texture bias. Extensive experiments on three segmentation tasks of medical images with different modalities demonstrate that the proposed SIG-UNet achieves promising intra-dataset results while significantly improving the cross-dataset segmentation performance. The source code will be publicly available after acceptance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] DEU-Net: Dual Encoder U-Net for 3D Medical Image Segmentation
    Zhou, Yuxiang
    Kang, Xin
    Ren, Fuji
    Nakagawa, Satoshi
    Shan, Xiao
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2735 - 2741
  • [42] CSCA U-Net: A channel and space compound attention CNN for medical image segmentation
    Shu, Xin
    Wang, Jiashu
    Zhang, Aoping
    Shi, Jinlong
    Wu, Xiao-Jun
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [43] An Attention-oriented U-Net Model and Global Feature for Medical Image Segmentation
    Han, Yandong
    Li, Jiangjiang
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2020, 23 (04): : 731 - 738
  • [44] SAU-Net: Medical Image Segmentation Method Based on U-Net and Self-Attention
    Zhang S.-J.
    Peng Z.
    Li H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2433 - 2442
  • [45] GA-UNet: A Lightweight Ghost and Attention U-Net for Medical Image Segmentation
    Pang, Bo
    Chen, Lianghong
    Tao, Qingchuan
    Wang, Enhui
    Yu, Yanmei
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (04): : 1874 - 1888
  • [46] Repurposing traditional U-Net predictions for sparse SAM prompting in medical image segmentation
    Colbert, Zachery Morton
    Arrington, Daniel
    Foote, Matthew
    Garding, Jonas
    Fay, Dominik
    Huo, Michael
    Pinkham, Mark
    Ramachandran, Prabhakar
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (02)
  • [47] Edge-Boosted U-Net for 2D Medical Image Segmentation
    Zhao, Renjie
    Chen, Weiting
    Cao, Guitao
    IEEE ACCESS, 2019, 7 : 171214 - 171222
  • [48] DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation
    Lin, Ailiang
    Chen, Bingzhi
    Xu, Jiayu
    Zhang, Zheng
    Lu, Guangming
    Zhang, David
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Yawu Zhao
    Shudong Wang
    Yulin Zhang
    Sibo Qiao
    Mufei Zhang
    Complex & Intelligent Systems, 2023, 9 : 6971 - 6983
  • [50] ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation
    Li, Chen
    Tan, Yusong
    Chen, Wei
    Luo, Xin
    He, Yulin
    Gao, Yuanming
    Li, Fei
    COMPUTERS & GRAPHICS-UK, 2020, 90 : 11 - 20