Shape-intensity-guided U-net for medical image segmentation

被引:1
|
作者
Dong, Wenhui
Du, Bo
Xu, Yongchao [1 ]
机构
[1] Wuhan Univ, Inst Artificial Intelligence, Sch Comp Sci, Wuhan, Peoples R China
关键词
Medical image segmentation; Texture bias; Shape-intensity prior; Model generalization; NETWORK;
D O I
10.1016/j.neucom.2024.128534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image segmentation has achieved impressive results thanks to U-Net or its alternatives. Yet, most existing methods perform segmentation by classifying individual pixels, tending to ignore the shape-intensity prior information. This may yield implausible segmentation results. Besides, the segmentation performance often drops greatly on unseen datasets. One possible reason is that the model is biased towards texture information, which varies more than shape information across different datasets. In this paper, we introduce a novel Shape-Intensity-Guided U-Net (SIG-UNet) for improving the generalization ability of variants of UNet in segmenting medical images. Specifically, we adopt the U-Net architecture to reconstruct class-wisely averaged images that only contain the shape-intensity information. We then add an extra similar decoder branch with the reconstruction decoder for segmentation, and apply skip fusion between them. Since the class- wisely averaged image has no any texture information, the reconstruction decoder focuses more on shape and intensity features than the encoder on the original image. Therefore, the final segmentation decoder has less texture bias. Extensive experiments on three segmentation tasks of medical images with different modalities demonstrate that the proposed SIG-UNet achieves promising intra-dataset results while significantly improving the cross-dataset segmentation performance. The source code will be publicly available after acceptance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Medical Image Segmentation Review: The Success of U-Net
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Rauland, Amelie
    Jia, Yiwei
    Avval, Atlas Haddadi
    Bozorgpour, Afshin
    Karimijafarbigloo, Sanaz
    Cohen, Joseph Paul
    Adeli, Ehsan
    Merhof, Dorit
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10076 - 10095
  • [2] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810
  • [3] MIXED TRANSFORMER U-NET FOR MEDICAL IMAGE SEGMENTATION
    Wang, Hongyi
    Xie, Shiao
    Lin, Lanfen
    Iwamoto, Yutaro
    Han, Xian-Hua
    Chen, Yen-Wei
    Tong, Ruofeng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2390 - 2394
  • [4] BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation
    Zhang, Hongbin
    Zhong, Xiang
    Li, Guangli
    Liu, Wei
    Liu, Jiawei
    Ji, Donghong
    Li, Xiong
    Wu, Jianguo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159
  • [5] Recurrent residual U-Net for medical image segmentation
    Alom, Md Zahangir
    Yakopcic, Chris
    Hasan, Mahmudul
    Taha, Tarek M.
    Asari, Vijayan K.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [6] Diffusion Transformer U-Net for Medical Image Segmentation
    Chowdary, G. Jignesh
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 622 - 631
  • [7] Local Adaptive U-net for Medical Image Segmentation
    Liu, Ning
    Liu, Liangliang
    Wang, Jianxin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 670 - 674
  • [8] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [9] IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation
    Chen, Siyuan
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [10] Design of Superpiexl U-Net Network for Medical Image Segmentation
    Wang H.
    Liu H.
    Guo Q.
    Deng K.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1007 - 1017