Stability of the logarithmic Sobolev inequality and uncertainty principle for the Tsallis entropy

被引:0
作者
Suguro, Takeshi [1 ]
机构
[1] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
关键词
Logarithmic Sobolev inequality; Tsallis entropy; Stability; Uncertainty relation inequality; POROUS-MEDIUM EQUATION; RENYI ENTROPY; EVOLUTION; REMAINDER; DEFICIT;
D O I
10.1016/j.na.2024.113644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stability of the functional inequalities concerning the entropy functional. For the Boltzmann-Shannon entropy, the logarithmic Sobolev inequality holds as a lower bound of the entropy by the Fisher information, and the Heisenberg uncertainty principle follows from combining it with the Shannon inequality. The optimizer for these inequalities is the Gauss function, which is a fundamental solution to the heat equation. In the fields of statistical mechanics and information theory, the Tsallis entropy is known as a one-parameter extension of the Boltzmann-Shannon entropy, and the Wasserstein gradient flow of it corresponds to the quasilinear diffusion equation. We consider the improvement and stability of the optimizer for the logarithmic Sobolev inequality related to the Tsallis entropy. Furthermore, we show the stability results of the uncertainty principle concerning the Tsallis entropy.
引用
收藏
页数:16
相关论文
共 56 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]   Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand's cost inequality [J].
Bez, Neal ;
Nakamura, Shohei ;
Tsuji, Hiroshi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
[3]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[4]  
Bidgoli A, 2020, Arxiv, DOI arXiv:2007.03647
[5]   Bounds on the deficit in the logarithmic Sobolev inequality [J].
Bobkov, S. G. ;
Gozlan, N. ;
Roberto, C. ;
Samson, P. -M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4110-4138
[6]  
Boltzmann L., 1872, Sitzungsberichte Akademie Der Wissenschaften, V66, P316
[7]  
Bonforte M., 2023, Discrete Contin. Dyn. Syst., V43, P1070
[8]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[9]  
Brezis H., 1997, Rev. Mat. Univ. Comput. Madrid, V10, P443
[10]   SUPERADDITIVITY OF FISHER INFORMATION AND LOGARITHMIC SOBOLEV INEQUALITIES [J].
CARLEN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (01) :194-211