A model based LSTM and graph convolutional network for stock trend prediction

被引:0
|
作者
Ran, Xiangdong [1 ]
Shan, Zhiguang [2 ]
Fan, Yukang [3 ]
Gao, Lei [4 ]
机构
[1] Beijing Informat Technol Coll, Beijing, Peoples R China
[2] State Informat Ctr, Informatizat & Ind Res Dept, Beijing, Peoples R China
[3] NYU, Coll Arts & Sci, New York, NY USA
[4] Beijing Big Data Ctr, Stand & Safety Dept, Beijing, Peoples R China
关键词
Long short-term memory; Graph convolutional network; Stock trend prediction; Stock trading decisions; NEURAL-NETWORK;
D O I
10.7717/peerj-cs.2326
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stock market is a complex system characterized by collective activity, where interdependencies between stocks have a significant influence on stock price trends. It is widely believed that modeling these dependencies can improve the accuracy of stock trend prediction and enable investors to earn more stable profits. However, these dependencies are not directly observable and need to be analyzed from stock data. In this paper, we propose a model based on Long short-term memory (LSTM) and graph convolutional network to capture these dependencies for stock trend prediction. Specifically, an LSTM is employed to extract the stock features, with all hidden state outputs utilized to construct the graph nodes. Subsequently, Pearson correlation coefficient is used to organize the stock features into a graph structure. Finally, a graph convolutional network is applied to extract the relevant features for accurate stock trend prediction. Experiments based on China A50 stocks demonstrate that our proposed model outperforms baseline methods in terms of prediction performance and trading backtest returns. In trading backtest, we have identified a set of effective trading strategies as part of the trading plan. Based on China A50 stocks, our proposed model shows promising results in generating desirable returns during both upward and downward channels of the stock market. The proposed model has proven beneficial for investors to seeking optimal timing and pricing when dealing with shares.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A novel graph convolutional feature based convolutional neural network for stock trend prediction
    Chen, Wei
    Jiang, Manrui
    Zhang, Wei-Guo
    Chen, Zhensong
    INFORMATION SCIENCES, 2021, 556 : 67 - 94
  • [2] A scientific research topic trend prediction model based on multi-LSTM and graph convolutional network
    Xu, Mingying
    Du, Junping
    Xue, Zhe
    Guan, Zeli
    Kou, Feifei
    Shi, Lei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 6331 - 6353
  • [3] GCNET: Graph-based prediction of stock price movement using graph convolutional network
    Jafari, Alireza
    Haratizadeh, Saman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [4] Link Prediction Model Based on Adversarial Graph Convolutional Network
    Tang C.
    Zhao J.
    Ye X.
    Yu S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (02): : 95 - 105
  • [5] Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network
    Song, Xiao
    Chen, Kai
    Li, Xu
    Sun, Jinghan
    Hou, Baocun
    Cui, Yong
    Zhang, Baochang
    Xiong, Gang
    Wang, Zilie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3285 - 3302
  • [6] Financial market trend prediction model based on LSTM neural network algorithm
    Dong, Peilin
    Wang, Xiaoyu
    Shi, Zhouhao
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (02) : 745 - 755
  • [7] Correlation Matters: A Stock Price Predication Model Based on the Graph Convolutional Network
    Xin, Chengkun
    Han, Qian
    Pan, Gang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 228 - 239
  • [8] A Network Traffic Prediction Model Based on Layered Training Graph Convolutional Network
    Li, Yulian
    Su, Yang
    IEEE ACCESS, 2025, 13 : 24398 - 24410
  • [9] Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network
    Zhang, Tianhao
    Gu, Jiawei
    Wang, Zeyu
    Wu, Chunguo
    Liang, Yanchun
    Shi, Xiaohu
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 937 - 946
  • [10] Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network
    Tianhao Zhang
    Jiawei Gu
    Zeyu Wang
    Chunguo Wu
    Yanchun Liang
    Xiaohu Shi
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 937 - 946