Numerical investigation on thermal behaviors of Heat Sinks and Hybrid Heat Sinks with different PCMs for electronic cooling

被引:0
作者
Cicek, Burcu [1 ]
机构
[1] Aksaray Univ, Dept Mech Engn, Necmettin Erbakan Ave, TR-68000 Aksaray, Turkiye
关键词
Electronic cooling; PCM; melting; ANSYS Fluent; PCM heat sink; PERFORMANCE; MANAGEMENT; DEVICES; ENHANCEMENT;
D O I
10.1177/16878132241269229
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a numerical method was used to investigate the melting process of PCM-Heat Sink and PCM-Hybrid Heat sinks for electronic cooling. Firstly, three different PCMs, designated as RT-28HC, RT-31, and RT-54HC, with varying thermophysical properties, were used within aluminum finned heat sink and three-dimensional time-dependent analyses was conducted using the ANSYS Fluent software, at heat fluxes of 3.6, 4.2, and 4.8 kW/m2. To calculate the enhancement ratio in the PCM-Heat Sink, setpoint temperatures of 45 degrees C and 60 degrees C were selected. The results revealed that RT-54HC is the best option among them, since it produced the lowest heat sink base temperature at the end of 120 min simulation period. At last, two hybrid heat sink models, designated as HPCM1 and HPCM2 were designed and their cooling performances were analyzed at heat transfer coefficients of 5, 10, and 15 W/m K. The RT-54HC was used as the PCM for hybrid heat sinks at a heat flux of 4.8 kW/m2. It was observed that HPCM1, with heat conductivity coefficients of 10 and 15 W/m2 K were more effective than PCM-HS models for cooling. In conclusion, this study provides useful guidelines for designing heat sinks and selecting PCM types for electronic cooling.
引用
收藏
页数:17
相关论文
共 44 条
[1]  
Abhat A., 1976, 11 THERM C SAN DIEG
[2]   An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe [J].
Ali, Hafiz Muhammad .
JOURNAL OF ENERGY STORAGE, 2022, 53
[3]   Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison [J].
Ali, Hafiz Muhammad ;
Arshad, Adeel ;
Jabbal, Mark ;
Verdin, P. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :1199-1204
[4]   Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices [J].
Ali, Hafiz Muhammad ;
Arshad, Adeel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 :649-661
[5]  
[Anonymous], Rubitherm Gmbh: Rubitherm Technologies GmbH
[6]  
[Anonymous], ANSYS Fluent Software
[7]   Transient simulation of finned heat sinks embedded with PCM for electronics cooling [J].
Arshad, Adeel ;
Jabbal, Mark ;
Sardari, Pouyan Talebizadeh ;
Bashir, Muhammad Anser ;
Faraji, Hamza ;
Yan, Yuying .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 18
[8]   Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction [J].
Arshad, Adeel ;
Ali, Hafiz Muhammad ;
Ali, Muzaffar ;
Manzoor, Shehryar .
APPLIED THERMAL ENGINEERING, 2017, 112 :143-155
[9]   Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink [J].
Baby, Rajesh ;
Balaji, C. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 46 :27-30
[10]   Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling [J].
Baby, Rajesh ;
Balaji, C. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (5-6) :1642-1649