Few-Shot Remote Sensing Novel View Synthesis with Geometry Constraint NeRF

被引:1
|
作者
Kang, Jiaming [1 ]
Chen, Keyan [1 ]
Zou, Zhengxia [2 ]
Shi, Zhenwei [1 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Astronaut, Dept Guidance Nav & Control, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Vicinagearth security; remote sensing; novel view synthesis; image-based rendering; neural radiance field;
D O I
10.1142/S2737480724410012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Novel View Synthesis (NVS) is an important task for 3D interpretation in remote sensing scenes, which also benefits vicinagearth security by enhancing situational awareness capabilities. Recently, NVS methods based on Neural Radiance Fields (NeRFs) have attracted increasing attention for self-supervised training and highly photo-realistic synthesis results. However, it is still challenging to synthesize novel view images in remote sensing scenes, given the complexity of land covers and the sparsity of input multi-view images. In this paper, we propose a novel NVS method named FReSNeRF, which combines Image-Based Rendering (IBR) and NeRF to achieve high-quality results in remote sensing scenes with sparse input. We effectively solve the degradation problem by adopting the sampling space annealing method. Additionally, we introduce depth smoothness based on the segmentation mask to constrain the scene geometry. Experiments on multiple scenes show the superiority of our proposed FReSNeRF over other methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Novel Entropy-Based Regularization for NeRF to View Synthesis in Few-Shot Scenarios
    Liu, Ting
    Zhang, Sijia
    Li, Zhuoyuan
    Sun, Yi
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 113 - 122
  • [2] Feature Field Fusion for few-shot novel view synthesis
    Li, Junting
    Zhou, Yanghong
    Fan, Jintu
    Shou, Dahua
    Xu, Sa
    Mok, P. Y.
    IMAGE AND VISION COMPUTING, 2025, 156
  • [3] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Few-Shot Learning For Remote Sensing Scene Classification
    Alajaji, Dalal
    Alhichri, Haikel S.
    Ammour, Nassim
    Alajlan, Naif
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 81 - 84
  • [5] FEW-SHOT LEARNING FOR REMOTE SENSING IMAGE RETRIEVAL WITH MAML
    Zhong, Qian
    Chen, Ling
    Qian, Yuntao
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2446 - 2450
  • [6] Unlocking the capabilities of explainable few-shot learning in remote sensing
    Lee, Gao Yu
    Dam, Tanmoy
    Ferdaus, Md. Meftahul
    Poenar, Daniel Puiu
    Duong, Vu N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [7] Generalized Few-Shot Semantic Segmentation for Remote Sensing Images
    Jia, Yuyu
    Li, Jiabo
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Balancing Attention to Base and Novel Categories for Few-Shot Object Detection in Remote Sensing Imagery
    Zhu, Zining
    Wang, Peijin
    Diao, Wenhui
    Yang, Jinze
    Kong, Lingyu
    Wang, Hongqi
    Sun, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [9] Few-Shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects
    Zhang, Fahong
    Shi, Yilei
    Xiong, Zhitong
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [10] Generalized Few-Shot Semantic Segmentation in Remote Sensing: Challenge and Benchmark
    Broni-Bediako, Clifford
    Xia, Junshi
    Song, Jian
    Chen, Hongruixuan
    Siam, Mennatullah
    Yokoya, Naoto
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21