Unbalanced Data-Based Fault Diagnosis Method of Bearing Utilizing Time-Frequency DCGAN Processing

被引:0
作者
Fei, Sheng-Wei [1 ]
Liu, Ying-Zhe [1 ]
机构
[1] Donghua Univ, Coll Mech Engn, Shanghai 201620, Peoples R China
来源
MECHANIKA | 2024年 / 30卷 / 04期
关键词
DCGAN; unbalanced data; fault diagnosis; bearing;
D O I
10.5755/j02.mech.35031
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Aiming at the unbalanced datasets of fault samples of bearing, a fault diagnosis method of bearing based on time-frequency DCGAN processing is proposed in this paper. Firstly, through STFT, the vibration signals are converted into the time-frequency images, and then the time-frequency images are input into DCGAN to expand the fault samples. Secondly, the expanded fault samples are evaluated for image quality through the comprehensive method of PSNR and SSIM. Thirdly, the Canny edge detection algorithm is used to extract features from the time-frequency image, and the obtained binary image is used as the feature. Finally, k-nearest neighbor algorithm is used for classification to testify the superiority of time-frequency DCGAN processing. The experimental results show that the expanded samples can effectively improve the unbalance of the samples and improve the accuracy of fault diagnosis of bearing.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 50 条
  • [41] Sparse Time-Frequency Analysis Based on Instantaneous Frequency Estimation and Fault Diagnosis Application
    Huang, Ying
    Bao, Wenjie
    Li, Fucai
    Li, Xiaolu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [42] Normal Data-Based Motor Fault Diagnosis Using Stacked Time-Series Imaging Method
    Jung, W.
    Lim, D. G.
    Lim, B. H.
    Park, Y. H.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XVIII, 2024, 12951
  • [43] A Novel Semi-Supervised Fault Diagnosis Method for Unbalanced Data
    Zhao, Dandan
    Chen, Jiajun
    Yin, Hongpeng
    Cai, Li
    Xia, Min
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06): : 7599 - 7609
  • [44] Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis
    Yu, Dejie
    Yang, Yu
    Cheng, Junsheng
    MEASUREMENT, 2007, 40 (9-10) : 823 - 830
  • [45] A fault diagnosis method of the two-dimension image fractal theory based on time-frequency image
    Lin Tian
    Hao Zhi-Hua
    Li Bing
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3918 - 3921
  • [46] A Fault Diagnosis Method for Unbalanced Data Based on a Deep Cost Sensitive Convolutional Neural Network
    He, Jing
    Yin, Ling
    Liu, Jianhua
    Zhang, Changfan
    Yang, Haonan
    IFAC PAPERSONLINE, 2022, 55 (03): : 43 - 48
  • [47] Multisensor Fusion Time-Frequency Analysis of Thruster Blade Fault Diagnosis Based on Deep Learning
    Tsai, Chia-Ming
    Wang, Chiao-Sheng
    Chung, Yu-Jen
    Sun, Yung-Da
    Perng, Jau-Woei
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19761 - 19771
  • [48] Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
    Liu, Ruonan
    Yang, Boyuan
    Zhang, Xiaoli
    Wang, Shibin
    Chen, Xuefeng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 75 : 345 - 370
  • [49] Oscillatory time-frequency concentration for adaptive bearing fault diagnosis under nonstationary time-varying speed
    Li, Yongbo
    Fu, Hao
    Feng, Ke
    Li, Zhixiong
    Peng, Zhike
    Saboktakin, Abbasali
    Noman, Khandaker
    MEASUREMENT, 2023, 218
  • [50] Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram
    Chang, Chun
    Wang, Qiyue
    Jiang, Jiuchun
    Jiang, Yan
    Wu, Tiezhou
    ENERGY, 2023, 278