Unbalanced Data-Based Fault Diagnosis Method of Bearing Utilizing Time-Frequency DCGAN Processing

被引:0
|
作者
Fei, Sheng-Wei [1 ]
Liu, Ying-Zhe [1 ]
机构
[1] Donghua Univ, Coll Mech Engn, Shanghai 201620, Peoples R China
来源
MECHANIKA | 2024年 / 30卷 / 04期
关键词
DCGAN; unbalanced data; fault diagnosis; bearing;
D O I
10.5755/j02.mech.35031
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Aiming at the unbalanced datasets of fault samples of bearing, a fault diagnosis method of bearing based on time-frequency DCGAN processing is proposed in this paper. Firstly, through STFT, the vibration signals are converted into the time-frequency images, and then the time-frequency images are input into DCGAN to expand the fault samples. Secondly, the expanded fault samples are evaluated for image quality through the comprehensive method of PSNR and SSIM. Thirdly, the Canny edge detection algorithm is used to extract features from the time-frequency image, and the obtained binary image is used as the feature. Finally, k-nearest neighbor algorithm is used for classification to testify the superiority of time-frequency DCGAN processing. The experimental results show that the expanded samples can effectively improve the unbalance of the samples and improve the accuracy of fault diagnosis of bearing.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 50 条
  • [11] Improving bearing fault diagnosis method based on the fusion of time-frequency diagram and a novel vision transformer
    Wang, Jingyuan
    Zhao, Yuan
    Wang, Wenyan
    Wu, Ziheng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [12] FTGAN: A Novel GAN-Based Data Augmentation Method Coupled Time-Frequency Domain for Imbalanced Bearing Fault Diagnosis
    Wang, Haoyu
    Li, Peng
    Lang, Xun
    Tao, Dapeng
    Ma, Jun
    Li, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [13] FTGAN: A Novel GAN-Based Data Augmentation Method Coupled Time-Frequency Domain for Imbalanced Bearing Fault Diagnosis
    Wang, Haoyu
    Li, Peng
    Lang, Xun
    Tao, Dapeng
    Ma, Jun
    Li, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [14] Fault diagnosis of rolling bearing' compound faults based on improved time-frequency spectrum analysis method
    Wang H.
    Xiang G.
    Guo Z.
    Gong X.
    Du W.
    1698, Beijing University of Aeronautics and Astronautics (BUAA) (32): : 1698 - 1703
  • [15] A wind turbine bearing fault diagnosis method based on fused depth features in time-frequency domain
    Tang, Zhenhao
    Wang, Mengjiao
    Ouyang, Tinghui
    Che, Fei
    ENERGY REPORTS, 2022, 8 : 12727 - 12739
  • [16] A Concentrated Time-Frequency Analysis Tool for Bearing Fault Diagnosis
    Yu, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) : 371 - 381
  • [17] Rolling Bearing Fault Diagnosis Based on Time-Frequency Compression Fusion and Residual Time-Frequency Mixed Attention Network
    Sun, Guodong
    Yang, Xiong
    Xiong, Chenyun
    Hu, Ye
    Liu, Moyun
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [18] Bearing Fault Diagnosis Using Time-Frequency Synchrosqueezing Transform
    Yu, Lan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4260 - 4264
  • [19] An adaptive time-frequency demodulation method and its applications in rolling bearing fault diagnosis
    Yang, Huan
    Zhang, Kun
    Jiang, Zuhua
    Zhang, Xiangfeng
    Xu, Yonggang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [20] Bearing Fault Diagnosis Method Based on Small Sample Data under Unbalanced Loads
    He Q.
    Tang X.
    Li C.
    Lu J.
    Chen J.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (10): : 1164 - 1171and1180