Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis

被引:8
|
作者
Bruin, Willem Benjamin [1 ]
Oltedal, Leif [2 ,3 ]
Bartsch, Hauke [2 ]
Abbott, Christopher [4 ]
Argyelan, Miklos [5 ,6 ]
Barbour, Tracy [7 ]
Camprodon, Joan [7 ]
Chowdhury, Samadrita [7 ]
Espinoza, Randall [8 ]
Mulders, Peter [9 ]
Narr, Katherine [10 ,11 ]
Oudega, Mardien [12 ]
Rhebergen, Didi [13 ,14 ]
ten Doesschate, Freek [1 ,15 ]
Tendolkar, Indira [9 ]
van Eijndhoven, Philip [9 ]
van Exel, Eric [12 ]
van Verseveld, Mike [15 ]
Wade, Benjamin [10 ]
van Waarde, Jeroen [15 ]
Zhutovsky, Paul [1 ]
Dols, Annemiek [12 ]
van Wingen, Guido [1 ,16 ]
机构
[1] Univ Amsterdam, Dept Psychiat, Amsterdam UMC, Amsterdam Neurosci, Amsterdam, Netherlands
[2] Haukeland Hosp, Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Bergen, Dept Clin Med, Bergen, Norway
[4] Univ New Mexico, Dept Psychiat, Albuquerque, NM USA
[5] Feinstein Inst Med Res, Manhasset, NY USA
[6] Zucker Hillside Hosp, Glen Oaks, NY USA
[7] Harvard Med Sch, Massachusetts Gen Hosp, Div Neuropsychiat & Neuromodulat, Boston, MA USA
[8] UCLA, Dept Psychiat & Biobehav Sci, Los Angeles, CA USA
[9] Donders Inst Brain Cognit & Behav, Dept Psychiat, Nijmegen, Netherlands
[10] UCLA, Ahmanson Lovelace Brain Mapping Ctr, Dept Neurol, Los Angeles, CA USA
[11] UCLA, Ahmanson Lovelace Brain Mapping Ctr, Dept Psychiat & Biobehav Sci, Los Angeles, CA USA
[12] Amsterdam UMC, Dept Old Age Psychiat, Dept Psychiat, GGZinGeest,Locat VUmc, Amsterdam, Netherlands
[13] Mental Hlth Inst GGZ Cent, Amersfoort, South Africa
[14] Amsterdam Neurosci, Dept Psychiat, Amsterdam UMC, Locat VUmc, Amsterdam, Netherlands
[15] Rijnstate, Dept Psychiat, Arnhem, Netherlands
[16] Univ Amsterdam, Amsterdam Brain & Cognit, Amsterdam, Netherlands
关键词
Biomarker; depression; ECT; machine learning; MRI; multimodal; DEFAULT-MODE NETWORK; FUNCTIONAL MRI; METAANALYSIS; DISORDER; CONNECTIVITY; PREDICTION; PRECUNEUS; ABNORMALITIES; HIPPOCAMPAL; 1ST-EPISODE;
D O I
10.1017/S0033291723002040
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background. Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods. Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score <= 7) using a support vector machine classifier. Results. Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82-0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70-0.73 AUC). Conclusions. These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [1] Prediction of anxious depression using multimodal neuroimaging and machine learning
    Zhou, Enqi
    Wang, Wei
    Ma, Simeng
    Xie, Xinhui
    Kang, Lijun
    Xu, Shuxian
    Deng, Zipeng
    Gong, Qian
    Nie, Zhaowen
    Yao, Lihua
    Bu, Lihong
    Wang, Fei
    Liu, Zhongchun
    NEUROIMAGE, 2024, 285
  • [2] A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder
    Achalia, Rashmin
    Sinha, Anannya
    Jacob, Arpitha
    Achalia, Garimaa
    Kaginalkar, Varsha
    Venkatasubramanian, Ganesan
    Rao, Naren P.
    ASIAN JOURNAL OF PSYCHIATRY, 2020, 50
  • [3] Multimodal-neuroimaging machine-learning analysis of motor disability in multiple sclerosis
    Buckova, Barbora Rehak
    Mares, Jan
    Skoch, Antonin
    Kopal, Jakub
    Tintera, Jaroslav
    Dineen, Robert
    Rasova, Kamila
    Hlinka, Jaroslav
    BRAIN IMAGING AND BEHAVIOR, 2023, 17 (01) : 18 - 34
  • [4] Multimodal-neuroimaging machine-learning analysis of motor disability in multiple sclerosis
    Barbora Rehák Bučková
    Jan Mareš
    Antonín Škoch
    Jakub Kopal
    Jaroslav Tintěra
    Robert Dineen
    Kamila Řasová
    Jaroslav Hlinka
    Brain Imaging and Behavior, 2023, 17 : 18 - 34
  • [5] A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation
    Ma, Simeng
    Xie, Xinhui
    Deng, Zipeng
    Wang, Wei
    Xiang, Dan
    Yao, Lihua
    Kang, Lijun
    Xu, Shuxian
    Wang, Huiling
    Wang, Gaohua
    Yang, Jun
    Liu, Zhongchun
    BIOLOGICAL PSYCHIATRY, 2024, 96 (01) : 44 - 56
  • [6] Predicting therapy outcome in a digital mental health intervention for depression and anxiety: A machine learning approach
    Hornstein, Silvan
    Forman-Hoffman, Valerie
    Nazander, Albert
    Ranta, Kristian
    Hilbert, Kevin
    DIGITAL HEALTH, 2021, 7
  • [7] Multimodal multi-center analysis of electroconvulsive therapy effects in depression: Brainwide gray matter increase without functional changes
    van de Mortel, L. A.
    Bruin, W. B.
    Thomas, R. M.
    Abbott, C.
    Argyelan, M.
    van Eijndhoven, P.
    Mulders, P.
    Narr, K. L.
    Tendolkar, I
    Verdijk, J. P. A. J.
    van Waarde, J. A.
    Bartsch, H.
    Oltedal, L.
    van Wingen, G. A.
    BRAIN STIMULATION, 2022, 15 (05) : 1065 - 1072
  • [8] Development and external validation of multimodal postoperative acute kidney injury risk machine learning models
    Karway, George K.
    Koyner, Jay L.
    Caskey, John
    Spicer, Alexandra B.
    Carey, Kyle A.
    Gilbert, Emily R.
    Dligach, Dmitriy
    Mayampurath, Anoop
    Afshar, Majid
    Churpek, Matthew M.
    JAMIA OPEN, 2023, 6 (04)
  • [9] Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies
    Gallo, Selene
    El-Gazzar, Ahmed
    Zhutovsky, Paul
    Thomas, Rajat M.
    Javaheripour, Nooshin
    Li, Meng
    Bartova, Lucie
    Bathula, Deepti
    Dannlowski, Udo
    Davey, Christopher
    Frodl, Thomas
    Gotlib, Ian
    Grimm, Simone
    Grotegerd, Dominik
    Hahn, Tim
    Hamilton, Paul J.
    Harrison, Ben J.
    Jansen, Andreas
    Kircher, Tilo
    Meyer, Bernhard
    Nenadic, Igor
    Olbrich, Sebastian
    Paul, Elisabeth
    Pezawas, Lukas
    Sacchet, Matthew D.
    Saemann, Philipp
    Wagner, Gerd
    Walter, Henrik
    Walter, Martin
    van Wingen, Guido
    MOLECULAR PSYCHIATRY, 2023, 28 (07) : 3013 - 3022
  • [10] Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model
    Nunez-Garcia, Jean C.
    Sanchez-Puente, Antonio
    Sampedro-Gomez, Jesus
    Vicente-Palacios, Victor
    Jimenez-Navarro, Manuel
    Oterino-Manzanas, Armando
    Jimenez-Candil, Javier
    Dorado-Diaz, P. Ignacio
    Sanchez, Pedro L.
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (09)