Malware Detector Based On Enhanced Vision Transformer

被引:1
作者
Zhao, Pin [1 ]
Gan, Gang [1 ]
机构
[1] Chengdu Univ Informat Technol, Cyberspace Secur Acad, Chengdu, Peoples R China
来源
2024 2ND INTERNATIONAL CONFERENCE ON MOBILE INTERNET, CLOUD COMPUTING AND INFORMATION SECURITY, MICCIS 2024 | 2024年
关键词
component; static analysis; malware; vision transformer;
D O I
10.1109/MICCIS63508.2024.00035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing use of automated generation tools, new malicious code variants are being generated at an alarming rate. To combat this, cybersecurity experts use static and dynamic analysis methods to analyze these variants. Static analysis entails examining disassembled code without running the malicious samples, whereas dynamic analysis involves scrutinizing behavioral data by executing samples within a controlled virtual environment. While both approaches have their pros and cons, static analysis proves more advantageous when it comes to handling extensive volumes of malware. This paper outlines the variances between static and dynamic analysis approaches, elucidates the process of extracting raw features in static analysis, and highlights the prevalent inclination towards static analysis when dealing with substantial volumes of malware. The applicability of the proposed framework is confirmed through the validation of diverse benchmark datasets. The suggested approach demonstrated superior performance, achieving an accuracy rate of 99.35% on the Malimg dataset.
引用
收藏
页码:163 / 167
页数:5
相关论文
共 50 条
[41]   GViT: Locality enhanced Vision Transformer using Spectral Graph Convolutional Network [J].
Jin, Longbin ;
Kim, Eun Yi .
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
[42]   Hint-Based Image Colorization Based on Hierarchical Vision Transformer [J].
Lee, Subin ;
Jung, Yong Ju .
SENSORS, 2022, 22 (19)
[43]   Vicinity Vision Transformer [J].
Sun W. ;
Qin Z. ;
Deng H. ;
Wang J. ;
Zhang Y. ;
Zhang K. ;
Barnes N. ;
Birchfield S. ;
Kong L. ;
Zhong Y. .
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) :12635-12649
[44]   Super Vision Transformer [J].
Lin, Mingbao ;
Chen, Mengzhao ;
Zhang, Yuxin ;
Shen, Chunhua ;
Ji, Rongrong ;
Cao, Liujuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (12) :3136-3151
[45]   Dual Vision Transformer [J].
Yao, Ting ;
Li, Yehao ;
Pan, Yingwei ;
Wang, Yu ;
Zhang, Xiao-Ping ;
Mei, Tao .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) :10870-10882
[46]   Super Vision Transformer [J].
Mingbao Lin ;
Mengzhao Chen ;
Yuxin Zhang ;
Chunhua Shen ;
Rongrong Ji ;
Liujuan Cao .
International Journal of Computer Vision, 2023, 131 :3136-3151
[47]   AHMDS: Advanced Hybrid Malware Detector System [J].
Susanto, Andre ;
Ahmad, Munawar Z. A. .
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2016,
[48]   Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy [J].
Wang, Shengdong ;
Liu, Zhenbao ;
Jia, Zhen ;
Zhao, Wen ;
Li, Zihao ;
Wang, Luyao .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
[49]   Vision Transformer based Intelligent Parking System for Smart Cities [J].
Sadek, Rowayda A. ;
Khalifa, Alaa A. .
2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
[50]   Research on facial recognition of sika deer based on vision transformer [J].
Gong, He ;
Luo, Tianye ;
Ni, Lingyun ;
Li, Ji ;
Guo, Jie ;
Liu, Tonghe ;
Feng, Ruilong ;
Mu, Ye ;
Hu, Tianli ;
Sun, Yu ;
Guo, Ying ;
Li, Shijun .
ECOLOGICAL INFORMATICS, 2023, 78