Failure of Electron Beam Physical Vapor Deposited Thermal Barrier Coatings System under Cyclic Thermo-Mechanical Loading with a Thermal Gradient

被引:1
作者
Liu, Liyu [1 ]
Liu, Delin [2 ]
Cai, Huangyue [3 ]
Mu, Rende [2 ]
Yang, Wenhui [2 ]
He, Limin [2 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, AVIC Failure Anal Ctr, Beijing Key Lab Aeronaut Mat Testing & Evaluat, Key Lab Aeronaut Mat Testing & Evaluat AECC, POB 81-4, Beijing 100095, Peoples R China
[2] AECC Beijing Inst Aeronaut Mat, Aviat Key Lab Sci & Technol Adv Corros & Protect A, POB 81-5, Beijing 100095, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
关键词
thermal barrier coating; thermo-mechanical coupling; NiCoCrAlYHf; DD6; superalloy; failure mechanism; microstructure evolution; DAMAGE EVOLUTION; BEHAVIOR; STRESS; SUPERALLOY; STRAIN; MODEL;
D O I
10.3390/coatings14070902
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The failure mechanism of a thermal barrier coatings (TBCs) system is investigated using cyclic thermo-mechanical loading with a thermal gradient. Hollow circular cylindrical specimens are employed, consisting of a nickel-based single-crystal alloy DD6 coated with a NiCoCrAlYHf bond coat via arc-ion plating and a surface electron beam physical vapor deposited (EB-PVD) yttria-stabilized zirconia topcoat. The experimental setup allows for a surface temperature of 1130 degrees C and a substrate temperature of 1070 degrees C, while a tensile mechanical load of 200 MPa is employed to simulate the centrifugal stress in the middle of the high-pressure turbine blade. The comparison between TBCs with and without mechanical loading implies that the coupled thermo-mechanical load significantly promotes coating spallation since the superposition of mechanical strain enhances the local tensile stress at the peak region of the topcoat/thermally grown oxides (TGOs) interface. A subsequent interfacial morphology analysis demonstrates that the topcoat/TGO interface exhibited a degradation in the direction parallel to the mechanical loading axis. For all the specimens, TGO comprises a duplex structure, consisting of outer spinel and inner alpha-Al2O3.
引用
收藏
页数:15
相关论文
共 40 条
[1]   Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions [J].
Aleksanoglu, H. ;
Scholz, A. ;
Oechsner, M. ;
Berger, C. ;
Rudolphi, M. ;
Schuetze, M. ;
Stamm, W. .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 53 :40-48
[2]   Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading [J].
Balint, D. S. ;
Kim, S. -S. ;
Liu, Yu-Fu ;
Kitazawa, R. ;
Kagawa, Y. ;
Evans, A. G. .
ACTA MATERIALIA, 2011, 59 (06) :2544-2555
[3]   An analytical model of rumpling in thermal barrier coatings [J].
Balint, DS ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (04) :949-973
[4]   Fatigue cracks in a thermal barrier coating system on a superalloy in multiaxial thermomechanical testing [J].
Bartsch, Marion ;
Baufeld, Bernd ;
Dalkilic, S. ;
Chernova, L. ;
Heinzelmann, Michael .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) :211-218
[5]   Phase-angle effects on damage mechanisms of thermal barrier coatings under thermomechanical fatigue [J].
Baufeld, B ;
Tzimas, E ;
Hähner, P ;
Müllejans, H ;
Peteves, SD ;
Moretto, P .
SCRIPTA MATERIALIA, 2001, 45 (07) :859-865
[6]   Advanced thermal gradient mechanical fatigue testing of CMSX-4 with an oxidation protection coating [J].
Baufeld, Bernd ;
Bartsch, Marion ;
Heinzelmann, Michael .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) :219-225
[7]   Evaluation of the reactivity of dense lanthanum-gadolinium zirconate ceramics with Colima volcanic ashes [J].
Bedoya-Trujillo, Ivan F. ;
Perez, Sebastian ;
Guijosa-Garcia, Cynthia Y. ;
Rivera-Gil, Marco A. ;
Naraparaju, Ravisankar ;
Zarate-Medina, Juan ;
Munoz-Saldana, Juan .
SURFACE & COATINGS TECHNOLOGY, 2023, 470
[8]   The evolution of thermal barrier coatings - status and upcoming solutions for today's key issues [J].
Beele, W ;
Marijnissen, G ;
van Lieshout, A .
SURFACE & COATINGS TECHNOLOGY, 1999, 120 :61-67
[9]   Finite element analysis of stress distribution in thermal barrier coatings [J].
Bialas, Marcin .
SURFACE & COATINGS TECHNOLOGY, 2008, 202 (24) :6002-6010
[10]  
Cao XQ, 2007, J MATER SCI TECHNOL, V23, P15