An open-source framework for data-driven trajectory extraction from AIS data-The α-method

被引:0
作者
Paulig, Niklas [1 ]
Okhrin, Ostap [1 ,2 ]
机构
[1] Tech Univ Dresden, Chair Econometr & Stat Esp Transport Sect, D-01187 Dresden, Saxony, Germany
[2] ScaDS AI, Ctr Scalable Data Analyt & Artificial Intelligence, Dresden, Germany
关键词
AIS; Data-driven; Trajectory extraction; Big data; Open-source; IDENTIFICATION SYSTEM AIS; SHIP; PREDICTION;
D O I
10.1016/j.oceaneng.2024.119092
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Ship trajectories from Automatic Identification System (AIS) messages are important in maritime safety, domain awareness, and algorithmic testing. Although the specifications for transmitting and receiving AIS messages are fixed, it is well known that technical inaccuracies and lacking seafarer compliance lead to severe data quality impairment. This paper proposes an adaptable, data-driven, maneuverability-dependent, alpha-quantile-based framework for decoding, constructing, splitting, and assessing trajectories from raw AIS records to improve transparency in AIS data mining. Results indicate the proposed filtering algorithm robustly extracts clean, long, and uninterrupted trajectories for further processing. An open-source Python implementation of the framework is provided.
引用
收藏
页数:19
相关论文
共 45 条
[1]   AIS trajectory classification based on IMM data [J].
Amigo Herrero, Daniel ;
Sanchez Pedroche, David ;
Garcia Herrero, Jesus ;
Molina Lopez, Jose Manuel .
2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
[2]  
[Anonymous], 1975, SURV REV, DOI [DOI 10.1179/SRE.1975.23.176.88, 10.1179/sre.1975.23.176.88]
[3]  
Bailey N.J., 2005, P SEAF INT RES CTR 4
[4]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[5]   Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks [J].
Capobianco, Samuele ;
Millefiori, Leonardo M. ;
Forti, Nicola ;
Braca, Paolo ;
Willett, Peter .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (06) :4329-4346
[6]  
Chen P., 2018, Int. J. Perform. Eng, V14, P2449, DOI [10.23940/ijpe.18.10.p22.24492457, DOI 10.23940/IJPE.18.10.P22.24492457]
[7]   Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction [J].
Chen, Xinqiang ;
Ling, Jun ;
Yang, Yongsheng ;
Zheng, Hailin ;
Xiong, Pengwen ;
Postolache, Octavian ;
Xiong, Yong .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
[8]   A semi-supervised deep learning approach for vessel trajectory classification based on AIS data [J].
Duan, Hongda ;
Ma, Fei ;
Miao, Lixin ;
Zhang, Canrong .
OCEAN & COASTAL MANAGEMENT, 2022, 218
[9]   An improved RRT algorithm based on prior AIS information and DP compression for ship path planning [J].
Gu, Qiyong ;
Zhen, Rong ;
Liu, Jialun ;
Li, Chen .
OCEAN ENGINEERING, 2023, 279
[10]   Improved kinematic interpolation for AIS trajectory reconstruction [J].
Guo, Shaoqing ;
Mou, Junmin ;
Chen, Linying ;
Chen, Pengfei .
OCEAN ENGINEERING, 2021, 234