Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction

被引:2
作者
Araujo, Mirella Lima Saraiva [1 ]
Kitagawa, Yasmin Kaore Lago [1 ]
Weyll, Arthur Lucide Cotta [1 ]
de Lima, Francisco Jose Lopes [1 ]
dos Santos, Thalyta Soares [1 ]
Jacondino, William Duarte [1 ]
Silva, Allan Rodrigues [1 ]
Filho, Marcio de Carvalho [2 ]
Bezerra, Willian Ramires Pires [2 ]
Melo Filho, Jose Bione de [2 ]
Santos, Alex alisson Bandeira [1 ]
Ramos, Diogo Nunes da Silva [1 ]
Moreira, Davidson Martins [1 ]
机构
[1] SENAI CIMATEC, Ctr Integrado Manufatura & Tecnol, BR-41650010 Salvador, BA, Brazil
[2] Co Hidro Elect Sao Francisco, Eletrobras CHESF, BR-50761901 Recife, PE, Brazil
来源
WIND | 2023年 / 3卷 / 04期
关键词
machine learning; wind power prediction; short-term forecasting; SCADA; PREDICTION; SPEED;
D O I
10.3390/wind3040028
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind power forecasting is pivotal in promoting a stable and sustainable grid operation by estimating future power outputs from past meteorological and turbine data. The inherent unpredictability in wind patterns poses substantial challenges in synchronizing supply with demand, with inaccuracies potentially destabilizing the grid and potentially causing energy shortages or excesses. This study develops a data-driven approach to forecast wind power from 30 min to 12 h ahead using historical wind power data collected by the Supervisory Control and Data Acquisition (SCADA) system from one wind turbine, the Enercon/E92 2350 kW model, installed at Casa Nova, Bahia, Brazil. Those data were measured from January 2020 to April 2021. Time orientation was embedded using sine/cosine or cyclic encoding, deriving 16 normalized features that encapsulate crucial daily and seasonal trends. The research explores two distinct strategies: error prediction and error correction, both employing a sequential model where initial forecasts via k-Nearest Neighbors (KNN) are rectified by the Extra Trees Regressor. Their primary divergence is the second model's target variable. Evaluations revealed both strategies outperforming the standalone KNN, with error correction excelling in short-term predictions and error prediction showing potential for extended forecasts. This exploration underscores the imperative importance of methodology selection in wind power forecasting.
引用
收藏
页码:496 / 512
页数:17
相关论文
共 31 条
[1]  
Agencia Nacional de Energia Eletrica (ANEEL), 2023, Matriz Renovaveis/Nao Renovaveis
[2]   Overview of wind power intermittency impacts on power systems [J].
Albadi, M. H. ;
El-Saadany, E. F. .
ELECTRIC POWER SYSTEMS RESEARCH, 2010, 80 (06) :627-632
[3]   Increasing the skill of short-term wind speed ensemble forecasts combining forecasts and observations via a new dynamic calibration [J].
Casciaro, Gabriele ;
Ferrari, Francesco ;
Lagomarsino-Oneto, Daniele ;
Lira-Loarca, Andrea ;
Mazzino, Andrea .
ENERGY, 2022, 251
[4]   Wind power forecasting based on time series model using deep machine learning algorithms [J].
Chandran, V. ;
Patil, Chandrashekhar K. ;
Manoharan, Anto Merline ;
Ghosh, Aritra ;
Sumithra, M. G. ;
Karthick, Alagar ;
Rahim, Robbi ;
Arun, K. .
MATERIALS TODAY-PROCEEDINGS, 2021, 47 :115-126
[5]   An adaptive hybrid system using deep learning for wind speed forecasting [J].
de Mattos Neto, Paulo S. G. ;
de Oliveira, Joao F. L. ;
Santos Junior, Domingos S. de O. ;
Siqueira, Hugo Valadares ;
Marinho, Manoel H. N. ;
Madeiro, Francisco .
INFORMATION SCIENCES, 2021, 581 :495-514
[6]  
Ekhtiari N, 2017, CLIMATE, V5, DOI 10.3390/cli5030050
[7]  
Empresa de Pesquisa Energetica (EPE), 2023, Balanco Energetico Nacional
[8]   Vehicle Travel Destination Prediction Method Based on Multi-source Data [J].
Hu, Jie ;
Cai, Shijie ;
Huang, Tengfei ;
Qin, Xiongzhen ;
Gao, Zhangbin ;
Chen, Liming ;
Du, Yufeng .
AUTOMOTIVE INNOVATION, 2021, 4 (03) :315-327
[9]   Wind Speed Prediction Based on Error Compensation [J].
Jiao, Xuguo ;
Zhang, Daoyuan ;
Wang, Xin ;
Tian, Yanbing ;
Liu, Wenfeng ;
Xin, Liping .
SENSORS, 2023, 23 (10)
[10]  
Jornal Nacional, 2022, Energias Solar e eolica Foram as Mais Competitivas em Leiloes do Governo, Mostra Pesquisa