Multi-step Multiplication Structure with Low Excess Noise for the AlInAsSb Avalanche Photodiode

被引:0
作者
Guo, Yechuan [1 ,2 ]
Yu, Jing [1 ,2 ]
Chen, Weiqiang [1 ,2 ]
Zhu, Lianqing [1 ,2 ]
Lu, Lidan [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, Beijing, Peoples R China
[2] Guangzhou Nansha ZiXi Intelligent Photon Sensing R, Guangzhou 511462, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-step; AlInAsSb avalanche photodiode; impact ionization engineering ((IE)-E-2); k value; excess noise; IMPACT IONIZATION; PERFORMANCE; ABSORPTION;
D O I
10.1007/s11664-024-11436-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on a multi-step multiplication structure to improve avalanche photodiode (APD) device performance using impact ionization engineering, which optimizes multiplication regions. The photocurrent, dark current, gain, and noise characteristics are studied. By optimizing the step structure of the multiplication region, the impact ionization coefficient ratio k of the AlInAsSb APD for traditional, single-step, double-step, and triple-step multiplication is 0.035, 0.028, 0.0254, and 0.0238, respectively, forming a declining trend. With an increasing gain of 14.4%, the gain can reach 381. And the results are generally consistent with the experimental results in previous research. Moreover, with the same multiplication region, by changing the Al component, the bandgap difference of the multiplication layer can reduce the excess noise of the device. By changing the bandgap difference, the k value of the multiplication region with a triple step decreases from 0.0238 to 0.0231. The final optimized results show that the multi-step APD has extremely low excess noise. The k value of the triple-step structure is 0.0231. This newly designed APD with a multi-step multiplication structure can provide a good foundation for subsequent specific experiments.
引用
收藏
页码:8078 / 8086
页数:9
相关论文
共 36 条
[1]  
Adachi S., 2009, Properties of Semiconductor Alloys: Group-Iv, III-V and II-VI Semiconductors, Vfirst, DOI DOI 10.1002/9780470744383
[2]   Avalanche Photodiodes Based on the AlInAsSb Materials System [J].
Bank, Seth R. ;
Campbell, Joe C. ;
Maddox, Scott J. ;
Ren, Min ;
Rockwell, Ann-Katheryn ;
Woodson, Madison E. ;
March, Stephen D. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (02)
[3]   HIGH-SPEED INP/INGAASP/INGAAS AVALANCHE PHOTODIODES GROWN BY CHEMICAL BEAM EPITAXY [J].
CAMPBELL, JC ;
TSANG, WT ;
QUA, GJ ;
JOHNSON, BC .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (03) :496-500
[4]   Evolution of Low-Noise Avalanche Photodetectors [J].
Campbell, Joe C. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (02)
[5]   IMPACT IONIZATION IN MULTILAYERED HETEROJUNCTION STRUCTURES [J].
CHIN, R ;
HOLONYAK, N ;
STILLMAN, GE ;
TANG, JY ;
HESS, K .
ELECTRONICS LETTERS, 1980, 16 (12) :467-469
[6]   Separate absorption, charge, and multiplication staircase avalanche photodiodes [J].
Dadey, Adam A. ;
Jones, Andrew H. ;
March, Stephen D. ;
Bank, Seth R. ;
Campbell, Joe C. .
APPLIED PHYSICS LETTERS, 2024, 124 (08)
[7]   Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs-InAlAsSACM avalanche photodiodes [J].
Duan, N ;
Wang, S ;
Zheng, XG ;
Li, X ;
Li, N ;
Campbell, JC ;
Wang, C ;
Coldren, LA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41 (04) :568-572
[8]   AVALANCHE-PHOTODIODE FREQUENCY RESPONSE [J].
EMMONS, RB .
JOURNAL OF APPLIED PHYSICS, 1967, 38 (09) :3705-+
[10]  
Jones A.H., 2020, Al x In 1-x As y Sb 1-y digital alloy avalanche photodiodes for low-noise applications