ALGEBRAS OF CONJUGACY CLASSES IN SYMMETRIC GROUPS AND CHECKER TRIANGULATED SURFACES

被引:0
作者
Neretin, Yu. a. [1 ,2 ,3 ,4 ]
机构
[1] Univ Vienna, Math Dept, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Moscow MV Lomonosov State Univ, Inst Informat Transmiss Problems, Moscow, Russia
[3] Moscow MV Lomonosov State Univ, Inst Theoret & Expt Phys, Moscow, Russia
[4] Moscow MV Lomonosov State Univ, Mech Math Dept, Moscow, Russia
关键词
Symmetric groups; group algebras; Ivanov-Kerov algebra; partial bijections; triangulated surfaces; conjugacy classes; COLLIGATIONS;
D O I
10.17323/1609-4514-2024-24-2-201-217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1999 V. Ivanov and S. Kerov observed that structure constants of algebras of conjugacy classes of symmetric groups Sn n admit a stabilization (in a non-obvious sense) as n -> infinity. We extend their construction to a class of pairs of groups G superset of K and algebras of conjugacy classes of G with respect to K . In our basic example, G = Sn n x S n , K is the diagonal subgroup S n . In this case we get a geometric description of this algebra.
引用
收藏
页码:201 / 217
页数:17
相关论文
共 29 条