A Surface-Enhanced Raman Scattering Substrate with Tunable Localized Surface Plasmon Resonance Absorption Based on AgNPs

被引:1
作者
Lin, Guanzhou [1 ,2 ]
Wu, Meizhang [3 ,4 ]
Tang, Rui [1 ,2 ]
Wu, Bo [1 ,2 ]
Wang, Yang [1 ,2 ]
Zhu, Jia [5 ]
Zhang, Jinwen [1 ,2 ]
Wu, Wengang [1 ,2 ,6 ]
机构
[1] Natl Key Lab Adv Micro & Nano Manufacture Technol, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, Beijing 100096, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Automat, Beijing 100083, Peoples R China
[5] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[6] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Ag nanoparticles; LSPR; SERS; SUPPRESSION;
D O I
10.3390/s24175778
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, a three-layer structure of silver particle (AgNP)-dielectric-metal is proposed and constructed based on the characteristics of AgNPs that can excite LSPR (Localized Surface Plasmon Resonance) in free space. In order to overcome the problem of AgNPs easily oxidizing in the air, this paper synthesizes AgNPs using the improved Tollens method and effectively suppresses the coffee-ring effect by changing the solution evaporation conditions, so that the distribution of AgNPs in the deposition area is relatively uniform. The structure proposed in this paper takes advantage of the flexibility of nanoparticle application. The AgNPs deposited on the dielectric layer can effectively localize energy and regulate the LSPR of the device well. The structure can not only achieve precise regulation of the LSPR resonance peak of AgNPs but also can be used as a SERS substrate.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Andrews D.L., 2016, Encyclopedia of Spectroscopy and Spectrometry, P924
[2]   Strong coupling between localized and propagating plasmon polaritons [J].
Balci, Sinan ;
Karademir, Ertugrul ;
Kocabas, Coskun .
OPTICS LETTERS, 2015, 40 (13) :3177-3180
[3]   Kinetically driven self assembly of highly ordered nanoparticle monolayers [J].
Bigioni, TP ;
Lin, XM ;
Nguyen, TT ;
Corwin, EI ;
Witten, TA ;
Jaeger, HM .
NATURE MATERIALS, 2006, 5 (04) :265-270
[4]  
Brongersma ML, 2007, SPRINGER SER OPT SCI, V131, P1, DOI 10.1007/978-1-4020-4333-8
[5]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[6]   Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey [J].
Doiron, Brock ;
Mota, Monica ;
Wells, Matthew P. ;
Bower, Ryan ;
Mihai, Andrei ;
Li, Yi ;
Cohen, Lesley F. ;
Alford, Neil McN. ;
Petrov, Peter K. ;
Oulton, Rupert F. ;
Maier, Stefan A. .
ACS PHOTONICS, 2019, 6 (02) :240-259
[7]   Extraordinary optical transmission through sub-wavelength hole arrays [J].
Ebbesen, TW ;
Lezec, HJ ;
Ghaemi, HF ;
Thio, T ;
Wolff, PA .
NATURE, 1998, 391 (6668) :667-669
[8]  
Gotschy W, 1996, APPL PHYS B-LASERS O, V63, P381
[9]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[10]   A Surface Enhanced Raman Scattering (SERS) Sensing Method Enhanced by All-metal Metasurface [J].
Lin, Guanzhou ;
Yang, Bingquan ;
Zhang, Chenglong ;
Zhu, Jia ;
Wang, Yang ;
Li, Liye ;
Xiong, Shisong ;
Zhang, Jinwen ;
Qi, Zhimei ;
Wu, Wengang .
PHYSICA SCRIPTA, 2023, 98 (12)